
QFI QF Fall 2022 Solutions Page 1 
 

QFI QF Model Solutions 
Fall 2022 

 
 
 
 
1. Learning Objectives: 

1. The candidate will understand the foundations of quantitative finance. 
 
Learning Outcomes: 
(1c) Understand Ito integral and stochastic differential equations. 
 
(1d) Understand and apply Ito’s Lemma. 
 
Sources: 
Hirsa and Neftci; An Introduction to the Mathematics of Financial Derivatives; Chapters 
10, 11 
 
Chin; Problems and Solutions Math Finance; Chapters 2, 3 
 
Commentary on Question: 
Most candidates did well on this problem.  
 
Solution: 
(a) List the criteria for a stochastic process to be a martingale with respect to the 

filtration {ℱ𝑡𝑡}𝑡𝑡≥0. 
 

Commentary on Question: 
Most candidates were able to list the three criteria. However, some candidates 
forgot the absolute value when stating the second criterion. 
 

The three criteria for 0 ≤ 𝑠𝑠 ≤ 𝑡𝑡 ≤ 𝑇𝑇 are: 
𝐸𝐸ℙ(𝑉𝑉𝑡𝑡|ℱ𝑠𝑠) = 𝑉𝑉𝑠𝑠; 

The equality holds almost surely. 
𝐸𝐸ℙ[|𝑉𝑉𝑡𝑡|] < ∞; 

And the 3rd criterion is that 𝑉𝑉𝑡𝑡 is ℱ𝑡𝑡-measurable  
 

 
(b) Derive a stochastic differential equation for 𝑋𝑋𝑡𝑡 using Ito’s Lemma. 
 

Commentary on Question: 
Most candidates did this part correctly. Some candidates did not use the correct 
notation that is specific to this problem. 
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1. Continued 
 

By Ito’s Lemma, one can derive 

𝑑𝑑𝑋𝑋𝑡𝑡 = 𝑊𝑊𝑡𝑡 2𝑑𝑑𝑡𝑡 +  
𝜕𝜕𝛼𝛼𝑡𝑡

𝜕𝜕𝑡𝑡
𝑑𝑑𝑡𝑡 +

𝜕𝜕𝛼𝛼𝑡𝑡

𝜕𝜕𝑊𝑊𝑡𝑡
𝑑𝑑𝑊𝑊𝑡𝑡 +

1
2

𝜕𝜕2𝛼𝛼𝑡𝑡

𝜕𝜕𝑊𝑊𝑡𝑡
2 𝑑𝑑𝑡𝑡 

 
(c) Identify an appropriate 𝛽𝛽𝑡𝑡, if it exists, that makes 𝑋𝑋𝑡𝑡 a martingale. 
 

Commentary on Question: 
Many candidates were able to derive the correct function. Most candidates were 
able to state that a martingale requires the drift to be zero. 

 
From part (b), it follows that 𝑊𝑊𝑡𝑡 2 + 𝜕𝜕𝛼𝛼𝑡𝑡

𝜕𝜕𝑡𝑡
+ 1

2
𝜕𝜕2𝛼𝛼𝑡𝑡
𝜕𝜕𝑊𝑊𝑡𝑡

2 = 0      (∗)  

implies that 𝑋𝑋𝑡𝑡 is a martingale.  
 
Since 𝛼𝛼𝑡𝑡 = −𝑡𝑡𝑊𝑊𝑡𝑡 2 + 𝛽𝛽𝑡𝑡 where 𝛽𝛽𝑡𝑡 is deterministic, we have 

𝑑𝑑𝑋𝑋𝑡𝑡 = (𝑊𝑊𝑡𝑡 2 − 𝑊𝑊𝑡𝑡  2)𝑑𝑑𝑡𝑡 + 𝜕𝜕𝛽𝛽𝑡𝑡
𝜕𝜕𝑡𝑡

𝑑𝑑𝑡𝑡 − 2t𝑊𝑊𝑡𝑡𝑑𝑑𝑊𝑊𝑡𝑡 − 𝑡𝑡𝑑𝑑𝑡𝑡. 

Therefore, by letting 𝛽𝛽𝑡𝑡 = 1
2

t2 and 𝛼𝛼𝑡𝑡 = −𝑡𝑡𝑊𝑊𝑡𝑡  2 + 1
2

t2, 𝑋𝑋𝑡𝑡 becomes a martingale. 
 

 
(d) Calculate 𝐸𝐸(𝑊𝑊𝑡𝑡

4) using Ito’s Lemma. 
 

Commentary on Question: 
Most candidates did this part correctly. 

 
We use Ito’s Lemma on 𝑓𝑓(𝑊𝑊𝑡𝑡) =  𝑊𝑊𝑡𝑡 4. 

𝑑𝑑𝑊𝑊𝑡𝑡  4 = 4𝑊𝑊𝑡𝑡 3𝑑𝑑𝑊𝑊𝑡𝑡 + 6𝑊𝑊𝑡𝑡 2𝑑𝑑𝑡𝑡 
therefore  

𝑊𝑊𝑡𝑡  4 = 4 � 𝑊𝑊𝑠𝑠 3𝑑𝑑𝑊𝑊𝑠𝑠

𝑡𝑡

0
+ 6 � 𝑊𝑊𝑠𝑠 2𝑑𝑑𝑠𝑠

𝑡𝑡

0
 

We then obtain 

𝐸𝐸(𝑊𝑊𝑡𝑡 4) = 6𝐸𝐸 �� 𝑊𝑊𝑠𝑠 2𝑑𝑑𝑠𝑠
𝑡𝑡

0
�         (∗∗). 

One can evaluate (∗∗) as follows (By Fubini’s theorem): 

𝐸𝐸 �� 𝑊𝑊𝑠𝑠 2𝑑𝑑𝑠𝑠
𝑡𝑡

0
� = � 𝐸𝐸(𝑊𝑊𝑠𝑠 2)𝑑𝑑𝑠𝑠

𝑡𝑡

0
= � 𝑠𝑠𝑑𝑑𝑠𝑠

𝑡𝑡

0
=

1
2

𝑡𝑡2. 
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1. Continued 
 
Alternatively, a candidate can use part (c) in the following manner: 
 
Since 𝑋𝑋𝑡𝑡 is a martingale,  

𝐸𝐸 �� 𝑊𝑊𝑠𝑠 2𝑑𝑑𝑠𝑠
𝑡𝑡

0
� + 𝐸𝐸(𝛼𝛼𝑡𝑡) = 0 ⇒ 𝐸𝐸 �� 𝑊𝑊𝑠𝑠 2𝑑𝑑𝑠𝑠

𝑡𝑡

0
� = 𝐸𝐸 �𝑡𝑡𝑊𝑊𝑡𝑡  2 −

1
2

t2� = 𝑡𝑡𝐸𝐸(𝑊𝑊𝑡𝑡  2) −
1
2

t2 =
1
2

t2. 

 
In either case, the result is: 

𝐸𝐸(𝑊𝑊𝑡𝑡 4) = 3𝑡𝑡2. 
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2. Learning Objectives: 
1. The candidate will understand the foundations of quantitative finance. 
 
Learning Outcomes: 
(1b) Understand the importance of the no-arbitrage condition in asset pricing 
 
(1f) Understand and apply Jensen’s Inequality 
 
Sources: 
Hirsa and Neftci; An Introduction to the Mathematics of Financial Derivatives; 
Wilmott; Frequently Asked Questions in Quantitative Finance 
 
Commentary on Question: 
Commentary listed underneath question component. 
 
Solution: 
(a) Determine the range of 𝛼𝛼 so that there is no arbitrage opportunity. 
 

Commentary on Question: 
Candidates did poorly on this part. Many failed to recognize the conditions 
needed to avoid arbitrage. 
 

If one invests 𝑆𝑆𝑡𝑡−1 in the risk-free asset at the beginning of year 𝑡𝑡, then the expected 
return is 1.05𝑆𝑆𝑡𝑡−1. 
 
Therefore, the following inequality should be satisfied to avoid arbitrage:𝛼𝛼𝑆𝑆𝑡𝑡−1 <
1.05𝑆𝑆𝑡𝑡−1 < 1.3𝑆𝑆𝑡𝑡−1 at 𝑡𝑡 = 1, 2, ... 
 
Thus, 𝛼𝛼 < 1.05. 
 
(b) Derive the price 𝑆𝑆4 as a function of 𝑑𝑑 and give the possible range of 𝑆𝑆4. 
 

Commentary on Question: 
Candidates did well on this part. 
 
𝑆𝑆4 = 100𝛼𝛼 𝑑𝑑1.3 4−𝑑𝑑. 

 
Thus, 100𝛼𝛼 4 < 𝑆𝑆4 < 285.61 

 
(c) Calculate the real-world probability that the double barrier option will be 

exercised.  
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2. Continued 
 

Commentary on Question: 
Candidates did poorly on this part. Many incorrectly states that 5 down 
movements were needed to exercise the barrier option. 

 
Since the upper barrier is 290, the barrier can be hit only if all 5 stock price movements 
are up. 
In the same manner, the lower barrier 70 can be hit only if the first 4 movements are all 
down. 
 
Therefore, the real-world probability of the double barrier option being exercized is: 

(0.65)(0.6)(0.55)(0.5)2 + (0.35)(0.4)(0.45)(0.5) = 8.5125%. 
 

 
(d) Calculate the risk-neutral probability of an up-movement in the price of the asset 

𝑆𝑆. 
 

Commentary on Question: 
Candidates did well on this part. 

 
Let us define the risk-neutral probability of up-movement as 𝑞𝑞. 
 
Then, we can solve the following equation for 𝑞𝑞: 
1.05 = 𝑞𝑞 × 1.3 + (1 − 𝑞𝑞) × 0.9. 
 

Thus, 𝑞𝑞 = 15
40

= 37.5%. 
 
(e) Calculate the price 𝑍𝑍0 of the double barrier option at 𝑡𝑡 = 0 under the risk-neutral 

measure. 
 

Commentary on Question: 
Candidates did well on this part. Candidates that incorrectly performed previous 
parts were not penalized for the same mistakes again.  

 
The risk-neutral expected payoff of the option at time 5 is 

𝐸𝐸Q[𝑍𝑍] = 100(𝑞𝑞5 + (1 − 𝑞𝑞)4) = 16. 
 
The time-0 price of the option is: 

𝑍𝑍0 =
𝐸𝐸Q[𝑍𝑍]

(1.05)5 = 12.54. 
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2. Continued 
 
(f) Derive a lower bound for the price 𝐶𝐶0 of the call option at 𝑡𝑡 = 0 under the risk-

neutral measure using Jensen’s inequality. 
 

Commentary on Question: 
Candidates performed poorly on this part. Most correctly stated Jensen’s 
inequality but could not apply it to the price of a call. 

 
One can easily verify that 𝑓𝑓(𝑥𝑥) = (𝑥𝑥 − 110)+ is a non-negative and convex function. 
Thus, we have 
𝐶𝐶0 = 𝐸𝐸Q[𝐶𝐶] = (1.05)−5𝐸𝐸Q[𝑓𝑓(𝑆𝑆5)] ≥ (1.05)−5𝑓𝑓(𝐸𝐸Q[𝑆𝑆5]). 
 
Since Q is the risk neutral measure, it is straightforward to see that 
𝐸𝐸Q[𝑆𝑆5] =  (1.05)5𝑆𝑆0 = 127.63. 
 
Therefore, 𝐶𝐶0 ≥ (1.05)−5[127.63 − 110] = 13.81. 

 
 
 
 
 
 
 



QFI QF Fall 2022 Solutions Page 7 
 

3. Learning Objectives: 
1. The candidate will understand the foundations of quantitative finance. 
 
5. The candidate will learn how to apply the techniques of quantitative finance to 

applied business contexts. 
 
Learning Outcomes: 
(1a) Understand and apply concepts of probability and statistics important in 

mathematical finance. 
 
(1b) Understand the importance of the no-arbitrage condition in asset pricing. 
 
(1d) Understand and apply Ito’s Lemma. 
 
(1h) Define and apply the concepts of martingale, market price of risk and measures in 

single and multiple state variable contexts. 
 
(1i) Demonstrate understanding of the differences and implications of real-world 

versus risk-neutral probability measures, and when the use of each is appropriate.  
 
(1j) Understand and apply Girsanov’s theorem in changing measures. 
 
(5a) Identify and evaluate embedded options in liabilities, specifically indexed annuity 

and variable annuity guarantee riders (GMAB, GMDB, GMWB and GMIB). 
 
Sources: 
Chin p. 156 Question 2, Neftci, QFIQ-113-17 
 
Commentary on Question: 
Overall, candidates performed as expected on this question. Parts b) and c) had the best 
responses. Few candidates scored well on part d) and found the manipulation in 
Girsanov’s theorem a challenge. Parts a) and e) were effectively straight but candidates 
in general struggled, especially with part e) where it was clear that few understood the 
material. 
 
Solution: 
(a) List two potential issues of using real-world probabilities to price an EIA. 
 

Commentary on Question: 
This was straight recital from Pg 113 of QFIQ-113-17. Other answers were 
accepted provided they were reasonable  
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3. Continued 
 
The two main problems associated with pricing with real probabilities are: 

 
1. You need to be able to measure real probablities. This can be harder than 

measuring volatilities. 
2. You need to decide on a utility function or a measure of risk aversion. 
 

(b) Show that the discounted stock index process 𝑒𝑒− ∫ 𝑟𝑟(𝑢𝑢)𝑑𝑑𝑢𝑢𝑡𝑡
0 𝑆𝑆(𝑡𝑡) is a martingale with 

respect to ℚ. 
 

Commentary on Question: 
Nearly half of candidates answered this question successfully using Ito’s Lemma 
as shown below. Some candidates attempted to use the definition of a Martingale, 
which in theory is perfectly acceptable; however, most candidates who used this 
approach failed to demonstrate the martingale property correctly. They struggled 
manipulating the conditional expectation and the properties of filtrations  
 

Use Ito’s Lemma: 

𝑑𝑑 �𝑒𝑒− ∫ 𝑟𝑟(𝑢𝑢)𝑑𝑑𝑢𝑢𝑡𝑡
0 𝑆𝑆(𝑡𝑡)� = −𝑟𝑟(𝑡𝑡) 𝑒𝑒− ∫ 𝑟𝑟(𝑢𝑢)𝑑𝑑𝑢𝑢𝑡𝑡

0 𝑆𝑆(𝑡𝑡) 𝑑𝑑𝑡𝑡 + 𝑒𝑒− ∫ 𝑟𝑟(𝑢𝑢)𝑑𝑑𝑢𝑢𝑡𝑡
0 𝑑𝑑𝑆𝑆(𝑡𝑡)

= −𝑟𝑟(𝑡𝑡) 𝑒𝑒− ∫ 𝑟𝑟(𝑢𝑢)𝑑𝑑𝑢𝑢𝑡𝑡
0 𝑆𝑆(𝑡𝑡) 𝑑𝑑𝑡𝑡 + 𝑒𝑒− ∫ 𝑟𝑟(𝑢𝑢)𝑑𝑑𝑢𝑢𝑡𝑡

0  𝑟𝑟(𝑡𝑡) 𝑆𝑆(𝑡𝑡) 𝑑𝑑𝑡𝑡
+ 𝑒𝑒− ∫ 𝑟𝑟(𝑢𝑢)𝑑𝑑𝑢𝑢𝑡𝑡

0 𝜎𝜎𝑆𝑆(𝑡𝑡) 𝑆𝑆(𝑡𝑡) 𝑑𝑑𝑊𝑊𝑆𝑆(𝑡𝑡) = 𝑒𝑒− ∫ 𝑟𝑟(𝑢𝑢)𝑑𝑑𝑢𝑢𝑡𝑡
0 𝜎𝜎𝑆𝑆(𝑡𝑡) 𝑆𝑆(𝑡𝑡) 𝑑𝑑𝑊𝑊𝑆𝑆(𝑡𝑡). 

which is driftless, hence the result. 
 

 
(c) Show that for some deterministic function 𝜃𝜃(𝑡𝑡),  
 

𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑(𝑡𝑡)

= 𝜃𝜃(𝑡𝑡)𝑑𝑑𝑡𝑡 + [𝜎𝜎𝑆𝑆(𝑡𝑡) 𝑑𝑑𝑊𝑊𝑆𝑆(𝑡𝑡) − 𝜎𝜎𝐵𝐵(𝑡𝑡, 𝑇𝑇) 𝑑𝑑𝑊𝑊𝐵𝐵(𝑡𝑡)]  

 
Commentary on Question: 
Overall candidates performed well on this part. A couple struggled to successfully 
clean up and identify theta. A small minority did not attempt the question or did 
not know how to use multivariate Ito’s lemma  
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3. Continued 
 

𝑑𝑑𝑑𝑑(𝑡𝑡) =
𝜕𝜕𝑑𝑑
𝜕𝜕𝑆𝑆

𝑑𝑑𝑆𝑆 +
𝜕𝜕𝑑𝑑
𝜕𝜕𝜕𝜕

𝑑𝑑𝜕𝜕 +
1
2

𝜕𝜕2𝑑𝑑
𝜕𝜕𝑆𝑆2 (𝑑𝑑𝑆𝑆)2 +

1
2

𝜕𝜕2𝑑𝑑
𝜕𝜕𝜕𝜕2 (𝑑𝑑𝜕𝜕)2 +

𝜕𝜕2𝑑𝑑
𝜕𝜕𝑆𝑆𝜕𝜕𝑆𝑆

(𝑑𝑑𝑆𝑆)(𝑑𝑑𝜕𝜕)

=
1

𝜕𝜕(𝑡𝑡, 𝑇𝑇) �𝑟𝑟(𝑡𝑡)𝑆𝑆(𝑡𝑡) 𝑑𝑑𝑡𝑡 + 𝜎𝜎𝑆𝑆(𝑡𝑡)𝑆𝑆(𝑡𝑡) 𝑑𝑑𝑊𝑊𝑆𝑆(𝑡𝑡)�

−
𝑆𝑆(𝑡𝑡)

𝜕𝜕(𝑡𝑡, 𝑇𝑇)2 �𝑟𝑟(𝑡𝑡)𝜕𝜕(𝑡𝑡, 𝑇𝑇)𝑑𝑑𝑡𝑡 + 𝜎𝜎𝐵𝐵(𝑡𝑡, 𝑇𝑇)𝜕𝜕(𝑡𝑡, 𝑇𝑇) 𝑑𝑑𝑊𝑊𝐵𝐵(𝑡𝑡)�

+
𝑆𝑆(𝑡𝑡)

𝜕𝜕(𝑡𝑡, 𝑇𝑇)3 𝜎𝜎𝐵𝐵(𝑡𝑡, 𝑇𝑇)2𝜕𝜕(𝑡𝑡, 𝑇𝑇)2𝑑𝑑𝑡𝑡 −
1

𝜕𝜕(𝑡𝑡, 𝑇𝑇)2 𝜌𝜌𝜎𝜎𝑆𝑆(𝑡𝑡)𝜎𝜎𝐵𝐵(𝑡𝑡, 𝑇𝑇)𝑆𝑆(𝑡𝑡)𝜕𝜕(𝑡𝑡, 𝑇𝑇)𝑑𝑑𝑡𝑡

=
𝑆𝑆(𝑡𝑡)

𝜕𝜕(𝑡𝑡, 𝑇𝑇)
[𝜎𝜎𝑆𝑆(𝑡𝑡) 𝑑𝑑𝑊𝑊𝑆𝑆(𝑡𝑡) − 𝜎𝜎𝐵𝐵(𝑡𝑡, 𝑇𝑇) 𝑑𝑑𝑊𝑊𝐵𝐵(𝑡𝑡)]

+
𝑆𝑆(𝑡𝑡)

𝜕𝜕(𝑡𝑡, 𝑇𝑇)
[𝜎𝜎𝐵𝐵(𝑡𝑡, 𝑇𝑇)2 − 𝜌𝜌𝜎𝜎𝑆𝑆(𝑡𝑡)𝜎𝜎𝐵𝐵(𝑡𝑡, 𝑇𝑇)]𝑑𝑑𝑡𝑡. 

 
Rewrite as follows: 
 

𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑(𝑡𝑡)

= [𝜎𝜎𝐵𝐵(𝑡𝑡, 𝑇𝑇)2 − 𝜌𝜌𝜎𝜎𝑆𝑆(𝑡𝑡)𝜎𝜎𝐵𝐵(𝑡𝑡, 𝑇𝑇)]𝑑𝑑𝑡𝑡 + [𝜎𝜎𝑆𝑆(𝑡𝑡) 𝑑𝑑𝑊𝑊𝑆𝑆(𝑡𝑡) − 𝜎𝜎𝐵𝐵(𝑡𝑡, 𝑇𝑇) 𝑑𝑑𝑊𝑊𝐵𝐵(𝑡𝑡)]. 

 
 
(d) Show that 𝑑𝑑𝑑𝑑(𝑡𝑡)

𝑑𝑑(𝑡𝑡) = 𝜎𝜎(𝑡𝑡) 𝑑𝑑𝑊𝑊∗(𝑡𝑡) for suitably defined 𝜎𝜎(𝑡𝑡), 𝑊𝑊∗(𝑡𝑡), and probability 
measure ℙ using Girsanov’s theorem. 

 
Commentary on Question: 
Most candidates did not do well on this question.  

 
Let 𝜎𝜎(𝑡𝑡) = �𝜎𝜎𝑆𝑆(𝑡𝑡)2 − 2𝜌𝜌𝜎𝜎𝑆𝑆(𝑡𝑡)𝜎𝜎𝐵𝐵(𝑡𝑡, 𝑇𝑇) + 𝜎𝜎𝐵𝐵(𝑡𝑡, 𝑇𝑇)2, then 
 

𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑(𝑡𝑡) = [𝜎𝜎𝐵𝐵(𝑡𝑡)2 − 𝜌𝜌𝜎𝜎𝑆𝑆(𝑡𝑡)𝜎𝜎𝐵𝐵(𝑡𝑡, 𝑇𝑇)]𝑑𝑑𝑡𝑡 + 𝜎𝜎(𝑡𝑡) 𝑑𝑑𝑊𝑊(𝑡𝑡). 

 
Define  𝜃𝜃𝑡𝑡 = 𝜎𝜎𝐵𝐵(𝑡𝑡, 𝑇𝑇)2 − 𝜌𝜌𝜎𝜎𝑆𝑆(𝑡𝑡)𝜎𝜎𝐵𝐵(𝑡𝑡, 𝑇𝑇) and 
 

𝜉𝜉𝑡𝑡 = 𝑒𝑒∫ ( 𝜃𝜃𝑢𝑢
𝜎𝜎(𝑢𝑢))𝑑𝑑𝑊𝑊(𝑢𝑢)−1/2 ∫ ( 𝜃𝜃𝑢𝑢

𝜎𝜎(𝑢𝑢))2𝑑𝑑𝑢𝑢𝑡𝑡
0

𝑡𝑡
0  

 
for 𝑡𝑡 > 0. Then 𝜉𝜉𝑡𝑡 is a martingale with respect to ℱ𝑡𝑡 and ℚ, and 
 

 𝑊𝑊∗(𝑡𝑡) = �
𝜃𝜃𝑢𝑢

𝜎𝜎(𝑢𝑢)  𝑑𝑑𝑢𝑢
𝑡𝑡

0
+ 𝑊𝑊(𝑡𝑡) 
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3. Continued 
 
is a Wiener process with respect to the same ℱ𝑡𝑡 and probability measure ℙ, which is 

defined by 
 

ℙ(𝐴𝐴) = 𝐸𝐸ℚ(𝕝𝕝𝐴𝐴𝜉𝜉𝑡𝑡) 
 
for any event 𝐴𝐴 in ℱ𝑡𝑡. The conclusion is that 
 

𝑑𝑑𝑊𝑊∗(𝑡𝑡) =
𝜃𝜃𝑡𝑡

𝜎𝜎(𝑡𝑡)  𝑑𝑑𝑡𝑡 + 𝑑𝑑𝑊𝑊(𝑡𝑡) 

 
therefore 
 

dF(t)
F(t) = σ(t) dW∗(t). 

 
(e) Express 𝐶𝐶𝑡𝑡  in terms of a risk-neutral expectation involving r(t) and S(t). 
 

Commentary on Question: 
Most candidates did not know the material asked in this question. Of those who 
attempted it, most completely excluded the expectation despite the question asking 
them to include one.  

 
For the EIA this is equal to ∏ max (1 + 0.8𝑅𝑅(𝑘𝑘), 𝑒𝑒0.01)𝑠𝑠

𝑘𝑘=1   
where R(k) = S(k)

𝑆𝑆(𝑘𝑘−1) − 1. 

𝐶𝐶(𝑡𝑡, 𝑠𝑠) = 𝐸𝐸ℙ �𝑒𝑒− ∫ 𝑟𝑟(𝑢𝑢)𝑑𝑑𝑢𝑢𝑠𝑠
𝑡𝑡 � max (1 + 0.8𝑅𝑅(𝑘𝑘), 𝑒𝑒0.01)

𝑠𝑠

𝑘𝑘=1

| 𝑑𝑑𝑡𝑡� 
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4. Learning Objectives: 
1. The candidate will understand the foundations of quantitative finance. 
 
Learning Outcomes: 
(1a) Understand and apply concepts of probability and statistics important in 

mathematical finance. 
 
(1c) Understand Ito integral and stochastic differential equations. 
 
(1d) Understand and apply Ito’s Lemma. 
 
Sources: 
An Introduction to the Mathematics of Financial Derivatives, Hirsa, Ali and Neftci, Salih 
N., 3rd Edition 2nd Printing, 2014 (Ch. 9) 
 
Problems and Solutions in Mathematical Finance: Stochastic Calculus, Chin, Eric, Nel, 
Dian and Olafsson, Sverrir, 2014 (pages 52, 66,146) 
 
Commentary on Question: 
Commentary listed underneath question component. 
 
Solution: 
(a) Show that 𝑍𝑍𝑡𝑡 = ∫ 𝑊𝑊𝑢𝑢𝑑𝑑𝑢𝑢𝑡𝑡

0  is a normally distributed random variable. 
 

Commentary on Question: 
Most candidates were able to show that Zt was normal; a full credit response 
required the use of the mean square limit as justification. 
 
We can use integration by parts to show 𝑑𝑑(𝑡𝑡𝑊𝑊𝑡𝑡) = 𝑡𝑡𝑑𝑑𝑊𝑊𝑡𝑡 + 𝑊𝑊𝑡𝑡𝑑𝑑𝑡𝑡. Therefore,  

𝑍𝑍𝑡𝑡 = � 𝑊𝑊𝑢𝑢 𝑑𝑑𝑢𝑢
𝑡𝑡

0
= 𝑡𝑡𝑊𝑊𝑡𝑡 − � 𝑢𝑢 𝑑𝑑𝑊𝑊𝑢𝑢

𝑡𝑡

0
= � (𝑡𝑡 − 𝑢𝑢) 𝑑𝑑𝑊𝑊𝑢𝑢

𝑡𝑡

0
 

 
The last integral is the mean square limit of ∑ (𝑡𝑡 − 𝑢𝑢𝑘𝑘−1)𝑛𝑛

𝑘𝑘=1 (𝑊𝑊𝑘𝑘 − 𝑊𝑊𝑘𝑘−1)for a 
subdivision 0 = 𝑢𝑢0 < 𝑢𝑢1 < ⋯ < 𝑢𝑢𝑛𝑛 = 𝑡𝑡 and 𝑊𝑊𝑘𝑘 ≔ 𝑊𝑊𝑢𝑢𝑘𝑘. This sum represents a 
linear combination of independent normally distributed random variables, which 
is also normal in the limit. 
 
Alternative solution: 
 
𝑍𝑍𝑡𝑡 = ∫ 𝑊𝑊𝑢𝑢 𝑑𝑑𝑢𝑢𝑡𝑡

0  is the mean square limit of ∑ 𝑊𝑊𝑘𝑘(𝑢𝑢𝑘𝑘 − 𝑢𝑢𝑘𝑘−1)𝑛𝑛
𝑘𝑘=1  for a subdivision 

0 = 𝑢𝑢0 < 𝑢𝑢1 < ⋯ < 𝑢𝑢𝑛𝑛 = 𝑡𝑡 and 𝑊𝑊𝑘𝑘 ≔ 𝑊𝑊𝑢𝑢𝑘𝑘. This sum represents a linear 
combination of independent normally distributed random variables, which is also 
normal in the limit. 
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4. Continued 
 
(b) Determine whether 𝑌𝑌𝑡𝑡 is a Wiener process with respect to the filtration {ℱ𝑡𝑡}𝑡𝑡≥0. 
 

Commentary on Question: 
Most candidates were able to derive the expectation and variance of 𝑌𝑌𝑡𝑡 correctly 
but were not able to identify the incremental variance as the reason it fails to be a 
Wiener process. Some candidates incorrectly deduced 𝑌𝑌𝑡𝑡 was a Wiener process 
based on the expectation and variance. 
 
In order to be a Wiener process with respect to filtration {ℱ𝑡𝑡}𝑡𝑡≥0, 𝑌𝑌𝑡𝑡 should 
satisfy: 

i. 𝑌𝑌0 = 0 and has continuous sample paths 
ii. For 𝑡𝑡 > 0, 𝑠𝑠 > 0, 𝑌𝑌𝑡𝑡+𝑠𝑠 − 𝑌𝑌𝑡𝑡 ~𝑁𝑁(0, 𝑠𝑠) [stationary increment] 

iii. For 𝑡𝑡 > 0, 𝑠𝑠 > 0, 𝑌𝑌𝑡𝑡+𝑠𝑠 − 𝑌𝑌𝑡𝑡  ⊥ 𝑌𝑌𝑡𝑡 [independent increment] 
 
We start with the expectation and variance of 𝑌𝑌𝑡𝑡: 
 
𝐸𝐸[𝑌𝑌𝑡𝑡] = 𝐸𝐸 �√3

𝑡𝑡
𝑍𝑍𝑡𝑡� = 𝐸𝐸 �√3

𝑡𝑡 ∫ (𝑡𝑡 − 𝑢𝑢) 𝑑𝑑𝑊𝑊𝑢𝑢
𝑡𝑡

0 � = √3
𝑡𝑡

𝐸𝐸 �∫ (𝑡𝑡 − 𝑢𝑢) 𝑑𝑑𝑊𝑊𝑢𝑢
𝑡𝑡

0 � = 0, as it is 
an Ito integral. 
 

𝑉𝑉𝑉𝑉𝑟𝑟[𝑌𝑌𝑡𝑡] = 𝑉𝑉𝑉𝑉𝑟𝑟 �
√3
𝑡𝑡

𝑍𝑍𝑡𝑡� = 𝐸𝐸 ��
√3
𝑡𝑡

𝑍𝑍𝑡𝑡�
2

� =
3
𝑡𝑡2 𝐸𝐸�𝑍𝑍𝑡𝑡

2� =
3
𝑡𝑡2 �(𝑡𝑡 − 𝑢𝑢)2

𝑡𝑡

0

𝑑𝑑𝑢𝑢 =
1
𝑡𝑡2 𝑡𝑡3

= 𝑡𝑡 
by Ito’s isometry. 
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4. Continued 
 
We can use the above to determine the incremental variance: 
 

𝑉𝑉𝑉𝑉𝑟𝑟[𝑌𝑌𝑡𝑡+𝑠𝑠 − 𝑌𝑌𝑡𝑡] = 𝑉𝑉𝑉𝑉𝑟𝑟 �
√3

𝑡𝑡 + 𝑠𝑠
𝑍𝑍𝑡𝑡+𝑠𝑠 −  

√3
𝑡𝑡

𝑍𝑍𝑡𝑡�

= 𝑉𝑉𝑉𝑉𝑟𝑟 �
√3

𝑡𝑡 + 𝑠𝑠
𝑍𝑍𝑡𝑡+𝑠𝑠� + 𝑉𝑉𝑉𝑉𝑟𝑟 �

√3
𝑡𝑡

𝑍𝑍𝑡𝑡� − 2𝐶𝐶𝐶𝐶𝐶𝐶 �
√3

𝑡𝑡 + 𝑠𝑠
𝑍𝑍𝑡𝑡+𝑠𝑠,

√3
𝑡𝑡

𝑍𝑍𝑡𝑡�

= (𝑡𝑡 + 𝑠𝑠) + 𝑡𝑡

−
6

𝑡𝑡(𝑡𝑡 + 𝑠𝑠) 𝐸𝐸 �� (𝑡𝑡 + 𝑠𝑠 − 𝑢𝑢) 𝑑𝑑𝑊𝑊𝑢𝑢

𝑡𝑡+𝑠𝑠

0
� (𝑡𝑡 − 𝑢𝑢) 𝑑𝑑𝑊𝑊𝑢𝑢

𝑡𝑡

0
�

= 2𝑡𝑡 + 𝑠𝑠

−
6

𝑡𝑡(𝑡𝑡 + 𝑠𝑠) �𝐸𝐸 �� (𝑡𝑡 + 𝑠𝑠 − 𝑢𝑢) 𝑑𝑑𝑊𝑊𝑢𝑢

𝑡𝑡+𝑠𝑠

t
� (𝑡𝑡 − 𝑢𝑢) 𝑑𝑑𝑊𝑊𝑢𝑢

𝑡𝑡

0
�

+ 𝐸𝐸 �� (𝑡𝑡 + 𝑠𝑠 − 𝑢𝑢) 𝑑𝑑𝑊𝑊𝑢𝑢

𝑡𝑡

0
� (𝑡𝑡 − 𝑢𝑢) 𝑑𝑑𝑊𝑊𝑢𝑢

𝑡𝑡

0
��

= 2𝑡𝑡 + 𝑠𝑠 −
6

𝑡𝑡(𝑡𝑡 + 𝑠𝑠) � (𝑡𝑡 + 𝑠𝑠 − 𝑢𝑢)
𝑡𝑡

0
(𝑡𝑡 − 𝑢𝑢)𝑑𝑑𝑢𝑢

= 2𝑡𝑡 + 𝑠𝑠 −
6

𝑡𝑡(𝑡𝑡 + 𝑠𝑠) �
𝑠𝑠𝑡𝑡2

2
+

𝑡𝑡3

3
� =

𝑠𝑠2

𝑡𝑡 + 𝑠𝑠
≠ 𝑠𝑠 

 
So, 𝑌𝑌𝑡𝑡 fails to have the stationary increment property and is therefore not a Wiener 
process. 
 
Alternative solution: 
For a Wiener process, 𝑊𝑊𝑡𝑡, we expect 𝐶𝐶𝐶𝐶𝐶𝐶[𝑊𝑊𝑡𝑡+𝑠𝑠, 𝑊𝑊𝑡𝑡 ] = 𝑡𝑡. However, 
 

𝐶𝐶𝐶𝐶𝐶𝐶 �
√3

𝑡𝑡 + 𝑠𝑠
𝑍𝑍𝑡𝑡+𝑠𝑠,

√3
𝑡𝑡

𝑍𝑍𝑡𝑡� =
3

𝑡𝑡(𝑡𝑡 + 𝑠𝑠) 𝐸𝐸 �� (𝑡𝑡 + 𝑠𝑠 − 𝑢𝑢) 𝑑𝑑𝑊𝑊𝑢𝑢

𝑡𝑡+𝑠𝑠

0
� (𝑡𝑡 − 𝑢𝑢) 𝑑𝑑𝑊𝑊𝑢𝑢

𝑡𝑡

0
�

=
3

𝑡𝑡(𝑡𝑡 + 𝑠𝑠) �𝐸𝐸 �� (𝑡𝑡 + 𝑠𝑠 − 𝑢𝑢) 𝑑𝑑𝑊𝑊𝑢𝑢

𝑡𝑡+𝑠𝑠

t
� (𝑡𝑡 − 𝑢𝑢) 𝑑𝑑𝑊𝑊𝑢𝑢

𝑡𝑡

0
�

+ 𝐸𝐸 �� (𝑡𝑡 + 𝑠𝑠 − 𝑢𝑢) 𝑑𝑑𝑊𝑊𝑢𝑢

𝑡𝑡

0
� (𝑡𝑡 − 𝑢𝑢) 𝑑𝑑𝑊𝑊𝑢𝑢

𝑡𝑡

0
��

=
3

𝑡𝑡(𝑡𝑡 + 𝑠𝑠) � (𝑡𝑡 + 𝑠𝑠 − 𝑢𝑢)
𝑡𝑡

0
(𝑡𝑡 − 𝑢𝑢)𝑑𝑑𝑢𝑢 =

3
𝑡𝑡(𝑡𝑡 + 𝑠𝑠) �

𝑠𝑠𝑡𝑡2

2
+

𝑡𝑡3

3
�

=
3𝑠𝑠𝑡𝑡 + 2𝑡𝑡2

2(𝑡𝑡 + 𝑠𝑠)
= 𝑡𝑡 +

𝑠𝑠𝑡𝑡
2(𝑡𝑡 + 𝑠𝑠)

≠ 𝑡𝑡 

 
Therefore, 𝑌𝑌𝑡𝑡 is not a Wiener process. 
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4. Continued 
 
(c) Derive an expression for 𝑑𝑑𝑑𝑑𝑡𝑡 in terms of 𝑑𝑑𝑌𝑌𝑡𝑡. 
 

Commentary on Question: 
Few candidates performed well on this section. Most failed to establish any 
relationship between Gt and Yt.  

 
We can easily derive an expression for ln 𝑆𝑆𝑢𝑢, given the process satisfies the GBM 
model: 

𝑆𝑆𝑢𝑢 = 𝑆𝑆0𝑒𝑒�𝜇𝜇−1
2𝜎𝜎2�𝑢𝑢+𝜎𝜎𝑊𝑊𝑢𝑢 ⇔ ln 𝑆𝑆𝑢𝑢 = ln 𝑆𝑆0 + �𝜇𝜇 −

1
2

𝜎𝜎2� 𝑢𝑢 + 𝜎𝜎𝑊𝑊𝑢𝑢 
 
We can substitute the above into the expression for ln 𝑑𝑑𝑡𝑡: 

ln 𝑑𝑑𝑡𝑡 =
1
𝑡𝑡

� �ln 𝑆𝑆0 + �𝜇𝜇 −
1
2

𝜎𝜎2� 𝑢𝑢 + 𝜎𝜎𝑊𝑊𝑢𝑢�
𝑡𝑡

0
𝑑𝑑𝑢𝑢 

= ln 𝑆𝑆0 + �𝜇𝜇 −
1
2

𝜎𝜎2�
𝑡𝑡
2

+
𝜎𝜎
𝑡𝑡

� 𝑊𝑊𝑢𝑢

𝑡𝑡

0
𝑑𝑑𝑢𝑢 

= ln 𝑆𝑆0 + �𝜇𝜇 −
1
2

𝜎𝜎2�
𝑡𝑡
2

+
𝜎𝜎

√3
𝑌𝑌𝑡𝑡 

 
This allows us to re-write the process, 𝑑𝑑𝑡𝑡 as: 

𝑑𝑑𝑡𝑡 = 𝑆𝑆0𝑒𝑒
�𝜇𝜇−1

2𝜎𝜎2�𝑡𝑡
2+ 𝜎𝜎

√3
𝑌𝑌𝑡𝑡 

 
By applying Ito’s Lemma to 𝑑𝑑𝑡𝑡, we find: 

𝑑𝑑𝑑𝑑𝑡𝑡 = 𝑑𝑑𝑡𝑡 �
1
2

�𝜇𝜇 −
1
2

𝜎𝜎2� 𝑑𝑑𝑡𝑡 +
𝜎𝜎

√3
𝑑𝑑𝑌𝑌𝑡𝑡 +

1
2

�
𝜎𝜎2

3
� 𝑑𝑑𝑡𝑡�, 

 
or equivalently: 

𝑑𝑑𝑑𝑑𝑡𝑡

𝑑𝑑𝑡𝑡
=

1
2

�𝜇𝜇 −
1
6

𝜎𝜎2� 𝑑𝑑𝑡𝑡 +
𝜎𝜎

√3
𝑑𝑑𝑌𝑌𝑡𝑡 
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5. Learning Objectives: 
2. The candidate will understand the fundamentals of fixed income markets and 

traded securities. 
 
Learning Outcomes: 
(2d) Understand the characteristics and uses of interest rate forwards, swaps, futures, 

and options. 
 
Sources: 
Fixed Income Securities: Valuation, Risk, and Risk Management, Veronesi, Pietro, 2010, 
Chs 5 – 6 
 
Commentary on Question: 
The questions tested candidates understanding of forwards and futures. In general, the 
candidates performed well, particularly when asked to discuss features and uses of 
interest rate instruments (parts d and e). Candidates performed below expectation when 
asked to calculate the value of a forward rate agreement (parts b and c).   
 
Solution: 
(a) Calculate the current 1 year forward rates implied by the above initial spot rates. 
 

Commentary on Question: 
The calculation was straightforward. A common error was to shift the forward 
rates by one period. Some candidates used a different formula.  
 

1
1 2

2

( , )( , , )* 1
( , )n

Z t Tf t T T
Z t T

∆ = −  

 
 Discount factor Spot Rate Forward Rate 
0 1   
1 0.99009901 0.01 0.03009901 
2 0.961168781 0.02 0.050295079 
3 0.915141659 0.03 0.070586304 
4 0.854804191 0.04 0.090970829 

 
(b) Describe the cost to enter into a Forward Rate Agreement (FRA) today on $100 

million for one year starting 3 years into the future assuming no transaction costs. 
 

Commentary on Question: 
Candidates performed below expectation on this question. Many candidates 
attempted to calculate a cost to enter the Forward Rate Agreement. 
 
There is no cost associated with entering into a forward rate agreement. (Besides 
some transactions costs in the real world.) 
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5. Continued 
 
(c) Determine the loss or gain if you were to exit the FRA at time 1. 
 

Commentary on Question: 
Candidates performed poorly on this question. Many candidates did not use the 
correct formula for the value of a forward rate agreement or were missing a part 
of the formula. A common mistake was that candidates used the forward rates and 
discount factors from the wrong time period.   

 
[ ]4 1 3 4 1 3 4( ) * ( , )* * (0, , ) ( , , )FRAV t N Z t T f T T f t T T= ∆ −  

 

 
Discount 
Factor Spot Rate 

Forward 
Rate  

0 1    
1 0.99009901 0.01 0.03009901  
2 0.961168781 0.02 0.050795079  
3 0.915141659 0.03 0.070586304  
4 0.854804191 0.04 0.090970829    
5 0.783526466 0.05   
     
1 1    
2 0.992555831 0.0075 0.027599256  
3 0.965897772 0.0175 0.047795806  
4 0.921837791 0.0275 0.06808774  
5 0.863073095 0.0375   

 
4(1, ) 0.9218Z T =  

𝑓𝑓1(0, 𝑇𝑇3, 𝑇𝑇4) = 0.070586304 
𝑓𝑓1(1, 𝑇𝑇3, 𝑇𝑇4) = 0.047795806 
𝑉𝑉𝑑𝑑𝐹𝐹𝐴𝐴(1) = 1000000 ∗ 𝑍𝑍(1, 𝑇𝑇4) ∗ [𝑓𝑓1(0, 𝑇𝑇3, 𝑇𝑇4) − 𝑓𝑓1(0, 𝑇𝑇3, 𝑇𝑇4)]

= −2,100,914.1985 
 
(d) Discuss the advantages and disadvantages of using forwards rather than futures 

for each of the following risks: 
 
(i) Basis Risk 

 
(ii) Tailing of the hedge 

 
(iii) Liquidity 

 
(iv) Credit Risk 
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5. Continued 
 

Commentary on Question: 
Candidates performed very well on this question. Candidates needed to state 
which instrument had an advantage and provide an explanation.  

 
Basis risk – Advantage for the forward, as futures may have maturity mismatch 
between the needs of the firm and the available maturities.  Forward would be 
customized. 
Tailing of the hedge- Advantage to a forward, as the cash flows from the future 
accrue over time (so time value of money must be taken into account.) 
Liquidity - Advantage to the future.  Forward contracts are harder to get out of the 
position as they are traded over the counter. 
Credit Risk – Advantage to the future.  Clearing house guarantees performance on 
futures contracts.  Forward has risk with the counterparty. 

 
(e) Describe one other instrument that may be more suitable to protect against such a 

situation.   
 

Commentary on Question: 
Candidates performed well on this question. A variety of instruments were 
acceptable solutions.  

 
Interest Rate Put Options with parameters tied to the initial yield curve.  Given 
that we are looking to emulate a forward contract, using a futures option on a 1-
year note is likely a reasonable approach. 
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6. Learning Objectives: 
2. The candidate will understand the fundamentals of fixed income markets and 

traded securities. 
 
Learning Outcomes: 
(2a) Understand the characteristics of fixed rate, floating rate, and zero-coupon bonds. 
 
(2d) Understand the characteristics and uses of interest rate forwards, swaps, futures, 

and options. 
 
Sources: 
Fixed Income Securities (Chapter 5) 
 
QFIQ-121-20: A Guide to Duration, DV01, and Yield Curve Risk Transformations 
 
Commentary on Question: 
This question tests candidates’ understanding of the meaning of the dollar value of a 
basis point and the relationship of this metric with forward rates.   
 
Solution: 
(a) Express partial DV01s for n assets with respect to the forward rate variables in the 

Jacobian matrix multiplication form by perturbating the curve rather than 
perturbating the inputs. 

 
Commentary on Question: 

 Most candidates wrote down the operational definition of the DV01 and about 3 
 out of 4 candidates wrote down the entire expression. 

 
The partial DV01 (dollar value of one basis point) of a Portfolio, P, with respect 
to the vector of forward rates (𝑓𝑓1 , 𝑓𝑓2  , 𝑓𝑓3 , 𝑓𝑓4, … ) is given by: 

 
𝜕𝜕𝜕𝜕
𝜕𝜕𝑓𝑓

=
𝜕𝜕𝜕𝜕
𝜕𝜕𝑟𝑟

× �
𝜕𝜕𝑓𝑓
𝑑𝑑𝑟𝑟

�
−1

 

 
(b) Calculate the partial DV01 of the portfolio P with respect to forward rates 

(𝑓𝑓1,𝑓𝑓2,𝑓𝑓3,𝑓𝑓4) based on the four sets of perturbed discount factors. 
 

Commentary on Question: 
Most candidates did not attempt this question at all.  Candidates that did attempt 
the question received credit for the first step in the process. 
 
The value is calculated using the formula from part (a): 

𝜕𝜕𝜕𝜕
𝜕𝜕𝑓𝑓

=
𝜕𝜕𝜕𝜕
𝜕𝜕𝑟𝑟

× �
𝜕𝜕𝑓𝑓
𝑑𝑑𝑟𝑟

�
−1
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6. Continued 
 

Step 1: Calculate the matrix of perturbed forward rates.  The forward rates for 
year 1 are the same as the spot rates.  For years 2 through 4, the rate is a time 
weighted average of the then-current perturbed spot rate and the corresponding 
perturbed spot rate from the prior year.  For example, the perturbed forward rate 
f2 for year 4 is 4𝑟𝑟2 (𝑝𝑝𝑒𝑒𝑟𝑟𝑡𝑡𝑢𝑢𝑟𝑟𝑝𝑝𝑒𝑒𝑑𝑑 𝑠𝑠𝑝𝑝𝐶𝐶𝑡𝑡 𝑟𝑟𝑉𝑉𝑡𝑡𝑒𝑒)𝑓𝑓𝐶𝐶𝑟𝑟 𝑦𝑦𝑒𝑒𝑉𝑉𝑟𝑟 4 − 3𝑟𝑟2 𝑓𝑓𝐶𝐶𝑟𝑟 𝑦𝑦𝑒𝑒𝑉𝑉𝑟𝑟 3 =
4 × 0.375 + 3 × 0.035 = 0.04500. 

 
Perturbed forward rate for year t = t x perturbed spot rate for year t  – (t-1) x 
perturbed spot rate for year t -1. This applies for f1, f2, f3 and f4 

 
 perturbed forward rates 

 f1 f2 f3 f4 
year 1 0.03010 0.03000 0.03000 0.03000 
year 2 0.03490 0.03520 0.03500 0.03500 
year 3 0.04000 0.03980 0.04030 0.04000 
year 4 0.04500 0.04500 0.04470 0.04540 

 
Step 2: Calculate the matrix of 𝜕𝜕𝜕𝜕.  The value for each entry is the total of the 
present value of the payments based on the perturbed discount factors less the 
total of the present value of the payments based on the given spot rates.  For 
example, the value for the payment in year 4 for Instrument 4 is the sum-product 
of the payments for Instrument 4 each year and the perturbed discount factors less 
the sum-product of the payments for Instrument 4 each year and the discount 
factors based on the given spot rates. 

 
 𝜕𝜕𝜕𝜕 

 I-1 I-2 I-3 I-4 
year 1 -0.0097 0.0000 -0.0004 -0.0004 
year 2 0.0000 -0.0187 -0.0007 -0.0008 
year 3 0.0000 0.0000 -0.0281 -0.0012 
year 4 0.0000 0.0000 0.0000 -0.0360 

 
Step 3: Calculate the transposed matrix of 𝜕𝜕𝜕𝜕.  This is the transposed matrix 
calculated in step 4 with adjustments based on the payments for each portfolio. 

 
 𝜕𝜕𝜕𝜕 

 year 1 year 2 year 3 year 4 
I-1 -0.0094 0.0000 0.0000 0.0000 
I-2 0.0000 -0.0182 0.0000 0.0000 
I-3 -0.0004 -0.0007 -0.0272 0.0000 
I-4 -0.0004 -0.0008 -0.0012 -0.0348 
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6. Continued 
 

Step 4: Calculate the matrix of 𝜕𝜕𝜕𝜕
𝜕𝜕𝑟𝑟

.  This is the transposed matrix of 𝜕𝜕𝜕𝜕 where each 
entry is divided by one basis point (0.0001). 

 

𝜕𝜕𝜕𝜕
𝜕𝜕𝑟𝑟

 

 year 1 year 2 year 3 year 4 

I-1 
-

94.2504 0.0000 0.0000 0.0000 

I-2 0.0000 
-

181.6772 0.0000 0.0000 
I-3 -3.7700 -7.2671 -271.8459 0.0000 

I-4 -4.2413 -8.1755 -11.7626 
-

347.6663 
 

Step 4b 
 

df = perturbed forward rate – initial forward rate 
 

 
 
Step 5: Calculate the matrix of 𝜕𝜕𝜕𝜕

𝜕𝜕𝑟𝑟
.  This is matrix where each entry is calculated 

as first subtracting forward rate from the perturbed forward rate, and then dividing 
the difference by one basis point (0.0001). 

 

𝜕𝜕𝑓𝑓
𝜕𝜕𝑟𝑟

 

 f1 f2 f3 f4 
year 1 1.0000 0.0000 0.0000 0.0000 
year 2 -1.0000 2.0000 0.0000 0.0000 
year 3 0.0000 -2.0000 3.0000 0.0000 
year 4 0.0000 0.0000 -3.0000 4.0000 

 
 

f1 f2 f3 f4
year 1 0.0001 0.0000 0.0000 0.0000
year 2 -0.0001 0.0002 0.0000 0.0000
year 3 0.0000 -0.0002 0.0003 0.0000
year 4 0.0000 0.0000 -0.0003 0.0004

df
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6. Continued 
 

Step 6: Calculate the inverse of the matrix of 𝜕𝜕𝜕𝜕
𝜕𝜕𝑟𝑟

.  

 
�

𝜕𝜕𝑓𝑓
𝜕𝜕𝑟𝑟

�
−1

 

 f1 f2 f3 f4 
year 1 1.0000 0.0000 0.0000 0.0000 
year 2 0.5000 0.5000 0.5000 0.5000 
year 3 0.3333 0.3333 0.3333 0.3333 
year 4 0.2500 0.2500 0.2500 0.2500 

 

Step 7: Calculate the matrix product of  𝜕𝜕𝜕𝜕
𝜕𝜕𝑟𝑟

 𝑉𝑉𝑎𝑎𝑑𝑑 �𝜕𝜕𝜕𝜕
𝜕𝜕𝑟𝑟

�
−1

  

 dP/df=dP/dr*(Inverse(df/dr)) 
 f1 f2 f3 f4 

I-1 
-

94.2504 0.0000 0.0000 0.0000 

I-2 
-

90.8386 
-

90.8386 0.0000 0.0000 

I-3 
-

98.0189 
-

94.2488 
-

90.6153 0.0000 

I-4 
-

99.1664 
-

94.9252 
-

90.8374 
-

86.9166 
 

 
(c) Explain how the continuously compounded yield should behave (i.e., increasing 

or decreasing) in the following time steps if the continuously compounded 
forward rate is above the continuously compounded yield at the previous time 
steps and vice versa. 

 
Commentary on Question: 
Most candidates received credit for writing down the correct conclusion.  Few 
candidates received credit for the derivation, or portions thereof, of the 
expression for the continuously compounded yield as a function of the 
continuously compounded forward rates. 

 
𝑍𝑍(0, 𝑇𝑇1) = 𝑒𝑒−𝜕𝜕(0,0,𝑇𝑇1)△ 

𝑍𝑍(0, 𝑇𝑇2) = 𝑍𝑍(0, 𝑇𝑇1) ∗ 𝑒𝑒−𝜕𝜕(0,𝑇𝑇1,𝑇𝑇2)△ 
⋮ = ⋮ 

𝑍𝑍(0, 𝑇𝑇𝑖𝑖) = 𝑍𝑍(0, 𝑇𝑇𝑖𝑖−1) ∗ 𝑒𝑒−𝜕𝜕(0,𝑇𝑇𝑖𝑖−1,𝑇𝑇𝑖𝑖)△ 
⋮ = ⋮ 

𝑍𝑍(0, 𝑇𝑇𝑛𝑛) = 𝑍𝑍(0, 𝑇𝑇𝑛𝑛−1) ∗ 𝑒𝑒−𝜕𝜕(0,𝑇𝑇𝑛𝑛−1,𝑇𝑇𝑛𝑛)△
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6. Continued 
 

By sequentially substituting the discount factor at previous steps, we end up the 
following equation: 

𝑍𝑍(0, 𝑇𝑇𝑛𝑛) =  𝑒𝑒−△�𝜕𝜕(0,0,𝑇𝑇1),+𝜕𝜕(0,𝑇𝑇1,𝑇𝑇2)+𝜕𝜕(0,𝑇𝑇2,𝑇𝑇3)+⋯+𝜕𝜕(0,𝑇𝑇𝑛𝑛−1,𝑇𝑇𝑛𝑛)� 
Then, the equation above is equivalent to the discount factor expressed in the 
continuously compounded yield with maturity of 𝑇𝑇𝑛𝑛: 

𝑍𝑍(0, 𝑇𝑇𝑛𝑛) = 𝑒𝑒−𝑟𝑟(0,𝑇𝑇𝑛𝑛)𝑇𝑇𝑛𝑛 
Finally, we can see that the continuously compounded yield is equivalent to the 
average of continuously compounded forward rates up to 𝑇𝑇𝑛𝑛: 

𝑟𝑟(0, 𝑇𝑇𝑛𝑛) =
1
𝑇𝑇𝑛𝑛

� 𝑓𝑓(0, 𝑇𝑇𝑖𝑖−1, 𝑇𝑇𝑖𝑖) △
𝑛𝑛

𝑖𝑖=1

 

Considering the relationship shown above, if the continuously compounded 
forward rates are above the continuously compounded yield at previous time 
steps, in the next time steps, the continuously compounded yield must be 
increasing, vice versa. 
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7. Learning Objectives: 
3. The candidate will understand: 

• The Quantitative tools and techniques for modeling the term structure of 
interest rates. 

• The standard yield curve models. 
• The tools and techniques for managing interest rate risk. 

 
Learning Outcomes: 
(3a) Understand and apply the concepts of risk-neutral measure, forward measure, 

normalization, and the market price of risk, in the pricing of interest rate 
derivatives. 

 
(3c) Calibrate a model to observed prices of traded securities. 
 
(3h) Understand the application of Monte Carlo simulation to risk neutral pricing of 

interest rate securities. 
 
(3j) Understand and apply the Heath-Jarrow-Morton approach including the LIBOR 

Market Model. 
 
(3l) Demonstrate an understanding of the issues and approaches to building models 

that admit negative interest rates. 
 
Sources: 
Fixed Income Securities: Valuation, Risk, and Risk Management, Veronesi, Pietro, 2010, 
Chapter 21 
 
QFIQ-116-17: Low Yield Curves and Absolute/Normal Volatilities 
 
Commentary on Question: 
This question is testing the candidates’ understanding of the T-forward risk neutral 
measure and the LMM model. It also tests the candidates’ knowledge on how to calibrate 
the volatility parameter and subsequently using the calibrated model to price fixed 
income derivatives.  
 
Solution: 
(a) Show that 𝑓𝑓(𝑡𝑡, 𝑇𝑇1, 𝑇𝑇2) = 𝐸𝐸∗[𝑟𝑟(𝑇𝑇1, 𝑇𝑇2)], where 𝑟𝑟(𝑇𝑇1, 𝑇𝑇2) is the spot rate from 𝑇𝑇1 to 

𝑇𝑇2. 
 

Commentary on Question: 
Some candidates were able to proceed with the question through either the 
forward rate agreement setup or the martingale property of forward rate under 
the T-forward risk neutral measure, but many candidates were not on the right 
track as they did not differentiate that r(T1, T2) is a random variable at time t, but 
f(t, T1, T2) is a known value. 
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7. Continued 
 

Consider a forward  contract whose forward price is the forward rate 𝑓𝑓(𝑡𝑡, 𝑇𝑇1, 𝑇𝑇2) and at the 
maturity 𝑇𝑇1 , the value is 𝑔𝑔𝑇𝑇2.  
Since the forward rate will converge to the spot rate at 𝑇𝑇1, and forward price will converge 
to the value at 𝑇𝑇1, 

𝑓𝑓(𝑇𝑇1, 𝑇𝑇1, 𝑇𝑇2) = 𝑔𝑔𝑇𝑇2 = 𝑟𝑟(𝑇𝑇1, 𝑇𝑇2) 
 
The forward price should make the contract value equal to 0 at time t, and with the given 
equation,  

𝑉𝑉𝑡𝑡 = 𝑍𝑍(𝑡𝑡, 𝑇𝑇1)𝐸𝐸∗�𝑓𝑓(𝑡𝑡, 𝑇𝑇1, 𝑇𝑇2) − 𝑔𝑔𝑇𝑇2� = 0 
Thus 

𝐸𝐸∗�𝑓𝑓(𝑡𝑡, 𝑇𝑇1, 𝑇𝑇2) − 𝑔𝑔𝑇𝑇2� = 0 
𝑓𝑓(𝑡𝑡, 𝑇𝑇1, 𝑇𝑇2) = 𝐸𝐸∗[𝑓𝑓(𝑇𝑇1, 𝑇𝑇1, 𝑇𝑇2)] = 𝐸𝐸∗�𝑔𝑔𝑇𝑇2� = 𝐸𝐸∗[𝑟𝑟(𝑇𝑇1, 𝑇𝑇2)] 

 
Alternatively, the candidate can leverage the fact that forward rate is martingale under the 
T-forward risk-neutral measure, thus 

𝑓𝑓(𝑡𝑡, 𝑇𝑇1, 𝑇𝑇2) = 𝐸𝐸∗[𝑓𝑓(𝑇𝑇1, 𝑇𝑇1, 𝑇𝑇2)] = 𝐸𝐸∗�𝑔𝑔𝑇𝑇2� = 𝐸𝐸∗[𝑟𝑟(𝑇𝑇1, 𝑇𝑇2)] 
 
(b) Determine the distribution of log(𝑟𝑟(𝑇𝑇1, 𝑇𝑇2)) including the defining parameters. 
 

Commentary on Question: 
Candidates did relatively well on this part. Many candidates were able to derive 
the dynamics of log(r(T1, T2)) using Ito’s lemma and make progress with deriving 
the distribution and the parameters.  
 

Under the T2-forward risk neutral measure, thus 𝑚𝑚 = 0 and 
𝑑𝑑𝑓𝑓(𝑡𝑡, 𝑇𝑇1, 𝑇𝑇2)
𝑓𝑓(𝑡𝑡, 𝑇𝑇1, 𝑇𝑇2) = 𝜎𝜎𝑑𝑑𝑊𝑊𝑡𝑡 

 
Since 𝑟𝑟(𝑇𝑇1, 𝑇𝑇2) = 𝑓𝑓(𝑇𝑇1, 𝑇𝑇1, 𝑇𝑇2), and based on the diffusion process above, it should have 
log-normal distribution.  
 
To determine the paramters of the log-normal distribution, let 𝑋𝑋(𝑇𝑇1, 𝑇𝑇1, 𝑇𝑇2) =
log (𝑓𝑓(𝑇𝑇1, 𝑇𝑇1, 𝑇𝑇2)), and by Ito’s lemma, 

𝑑𝑑𝑋𝑋 = �
𝜕𝜕𝑋𝑋
𝜕𝜕𝑡𝑡

+ 0 ×
𝜕𝜕𝑋𝑋
𝜕𝜕𝑓𝑓

+
𝜎𝜎2𝑓𝑓2

2
𝜕𝜕2𝑋𝑋
𝜕𝜕𝑓𝑓2� 𝑑𝑑𝑡𝑡 + 𝜎𝜎𝑓𝑓

𝜕𝜕𝑋𝑋
𝜕𝜕𝑓𝑓

𝑑𝑑𝑊𝑊𝑡𝑡 =
𝜎𝜎2𝑓𝑓2

2
�−

1
𝑓𝑓2� 𝑑𝑑𝑡𝑡 + 𝜎𝜎𝑓𝑓

1
𝑓𝑓

𝑑𝑑𝑊𝑊𝑡𝑡

= −
𝜎𝜎2

2
𝑑𝑑𝑡𝑡 + 𝜎𝜎𝑑𝑑𝑊𝑊𝑡𝑡 

Thus 𝑋𝑋(𝑇𝑇1, 𝑇𝑇1, 𝑇𝑇2) has a normal distribution with 

𝑚𝑚𝑒𝑒𝑉𝑉𝑎𝑎 = 𝑋𝑋(𝑡𝑡, 𝑇𝑇1, 𝑇𝑇2) + � −
𝜎𝜎2

2
𝑑𝑑𝑠𝑠

𝑇𝑇1

𝑠𝑠=𝑡𝑡
= log �𝑓𝑓(𝑡𝑡, 𝑇𝑇1, 𝑇𝑇2)� −

𝜎𝜎2

2
(𝑇𝑇1 − 𝑡𝑡) 

 
𝐶𝐶𝑉𝑉𝑟𝑟𝑣𝑣𝑉𝑉𝑎𝑎𝑣𝑣𝑒𝑒 = 𝜎𝜎2(𝑇𝑇1 − 𝑡𝑡) 
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7. Continued 
 
(c) Calculate the forward volatility, 𝜎𝜎𝜕𝜕

𝑖𝑖+1, implied by the given caplet prices, where 
𝑣𝑣 + 1 refers to the caplet maturing at Ti+1. 

 
Commentary on Question: 
Only some candidates were able to plug into Black’s formula the appropriate 
values from those given in the question and solve for the answers. Correct 
equations with the right values plugged in but without the correct answers earned 
partial marks. A common mistake is that some candidates use the wrong term to 
maturity for the caplet price when plugging in the Black’s formula. 

 
The implied volatilities can be calculated by back solving for the volatility parameters in 
the Black’s formula. E.g. for the first caplet 

0.648 =
1

(1 + 1.0%)0.25(1 + 1.1%)0.25  (1.1% × 𝑁𝑁(𝑑𝑑1) − 1.1% × 𝑁𝑁(𝑑𝑑2)) 

Where 
𝑑𝑑1 = 1

𝜎𝜎√0.5
𝑙𝑙𝐶𝐶𝑔𝑔 �1.1%

1.1%
� + 1

2
𝜎𝜎√0.5 and 𝑑𝑑2 = 𝑑𝑑1 − 𝜎𝜎√0.5 

𝜎𝜎 is goal seeked in excel and 𝜎𝜎 = 21% 
Following a similar calculation, 𝜎𝜎 = 24% and 𝜎𝜎 = 30% for the second and third 
caplet respectively. 

 
(d)  

(i) Simulate one outcome for each of the two forward rates in a single 
simulation step. 

 
(ii) Describe how the call option on the zero-coupon bond can be priced using 

Monte Carlo simulations. 
 

Commentary on Question: 
Part (i) had very low attempt rate, and only few candidates were given partial 
marks for writing down the correct simulation formula.  
For part (ii), many candidates only gave very general answers for Monte Carlo 
simulations without applying it under the context of the call option on the zero-
coupon bond (e.g., which forward rates and what volatility parameter should be 
used in the simulation), which is asked by the question. These answers did not 
receive points, but some candidates received partial points for demonstrating the 
application. 
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7. Continued 
 
Part (i) 
With the assumption that the volatility of forward rates depends only on time to maturity, 
the forward rate volatility can be extracted from the caplet implied volatilties calculated 
above: 

 𝑡𝑡 < 0.25 0.25 < 𝑡𝑡 < 0.5 0.5 < 𝑡𝑡 < 0.75 
𝑓𝑓(𝑡𝑡, 0.5, 0.75) 26.6% 21%  

f(𝑡𝑡, 0.75, 1) 39.3% 26.6% 21% 

26.6% = � 1
0.25

(24%2 × 0.5 − 21%2 × 0.25) 

39.3% = � 1
0.25

(24%2 × 0.5 − (21%2 + 26.6%2) × 0.25) 

Since the call option matures at T = 0.5, we want to simulate the rates 𝑟𝑟(0.5, 0.75) and 
𝑓𝑓(0.5, 0.75, 1) under the 𝑇𝑇0.5-forward measure, so we can calculate the simulated bond 
price.  
𝑓𝑓(𝑡𝑡, 0.5, 0.75) and 𝑓𝑓(𝑡𝑡, 0.75, 1) are not martingale under 𝑇𝑇0.5-forward measure, and their 
dynamics are given by 

𝑑𝑑𝑓𝑓(𝑡𝑡, 0.5, 0.75)
𝑓𝑓(𝑡𝑡, 0.5, 0.75) =

0.25𝑓𝑓(𝑡𝑡, 0.5, 0.75)𝜎𝜎0.75
2

1 + 0.25𝑓𝑓(𝑡𝑡, 0.5, 0.75) 𝑑𝑑𝑡𝑡 + 𝜎𝜎0.75𝑑𝑑𝑊𝑊𝑡𝑡 

where 
𝜎𝜎0.75 = �26.6%, 𝑡𝑡 ≤ 0.25

21%, 0.25 < 𝑡𝑡 ≤ 0.5 

And 
𝑑𝑑𝑓𝑓(𝑡𝑡, 0.75, 1)
𝑓𝑓(𝑡𝑡, 0.75, 1) = �

0.25𝑓𝑓(𝑡𝑡, 0.5, 0.75)𝜎𝜎0.75𝜎𝜎1

1 + 0.25𝑓𝑓(𝑡𝑡, 0.5, 0.75) +
0.25𝑓𝑓(𝑡𝑡, 0.75, 1)𝜎𝜎1

2

1 + 0.25𝑓𝑓(𝑡𝑡, 0.75, 1)� 𝑑𝑑𝑡𝑡 + 𝜎𝜎1𝑑𝑑𝑊𝑊𝑡𝑡 

where 
𝜎𝜎1 = �39.3%, 𝑡𝑡 ≤ 0.25

26.6%, 0.25 < 𝑡𝑡 ≤ 0.5 

 
Leveraging results from part b), it can be seen that 𝑓𝑓(0.25, 0.5, 0.75) can be simulated as 
follow: 

𝑓𝑓(0.25, 0.5, 0.75) = 𝑓𝑓(0, 0.5, 0.75)𝑒𝑒�0.25𝜕𝜕(0,0.5,0.75)0.2662

1+0.25𝜕𝜕(0,0.5,0.75) −0.5×0.2662�×0.25+0.266×√0.25×𝑧𝑧1

= 1.2054% 
 

𝑓𝑓(0.25, 0.75, 1) = 𝑓𝑓(0, 0.75, 1)𝑒𝑒�𝑚𝑚−0.5×0.3932�×0.25+0.393×√0.25×𝑧𝑧2 = 1.2262% 

𝑚𝑚 =
0.25𝑓𝑓(0, 0.5, 0.75) × 0.266 × 0.393

1 + 0.25𝑓𝑓(0, 0.5, 0.75) +
0.25𝑓𝑓(0, 0.75, 1)0.3932

1 + 0.25𝑓𝑓(0, 0.75, 1)  

 
Part (ii) 
Similarly to the simulation of 𝑓𝑓(0.25, 0.5, 0.75) and 𝑓𝑓(0.25, 0.75, 1) above, 
𝑓𝑓(0.5, 0.5, 0.75) and 𝑓𝑓(0.5, 0.75, 1) can be further simulated with the appropriate volatility 
parameters (21% and 26.6% respectively).  
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7. Continued 
 
The simulated rates can then be used to calculate price of the underlying zero-coupon bond 
of the option and thus the payoff at maturity: 

𝑀𝑀𝑉𝑉𝑥𝑥 �
1000

𝑓𝑓(0.5, 0.5, 0.75)𝑓𝑓(0.5, 0.75, 1) − 𝐾𝐾, 0� 

 
Repeat the simulations a large number of time (e.g., 10,000), price of the option is 
approximated by the average of payoffs under all simulations multiplied by the zero-
coupon bond price 1

𝑟𝑟(0,0.5). 
 
(e) Describe two limitations of calibrating interest rate volatility using Black’s 

formula and two potential alternatives to the LMM to address them. 
 

Commentary on Question: 
This part is done relatively well. Many candidates were able to identify the 
limitations and suggest a corresponding alternative. 

 
1. When interest rates have dropped post 2008, the Black’s volatilities have been 

observed to be very higher (30%-70% between 2009 to mid-2012, increasing to 
80%-170% from mid-2012 to mid-2014, and finally greater than 200% after mid-
2014). The absolute/normal volatilties have been observed to be more stable, 
leading to the view that interest rate distibutions may be more normal than log-
normal. The diffusion process of forward rate can be modified to be: 

𝑑𝑑𝑓𝑓(𝑡𝑡, 𝑇𝑇1, 𝑇𝑇2) = 𝜎𝜎𝑑𝑑𝑊𝑊𝑡𝑡 
 

2. LMM model is a log-normal model and does not allow negative rates. However 
negative rates have been observed recently and are becoming a possibility.  
A displaced log-normal version of the Black’s formula can be used to allow for 
negative rates in the LMM model: 

𝑑𝑑𝑓𝑓(𝑡𝑡, 𝑇𝑇1, 𝑇𝑇2)�

𝑓𝑓(𝑡𝑡, 𝑇𝑇1, 𝑇𝑇2)� = 𝜎𝜎𝑑𝑑𝑊𝑊𝑡𝑡 

where 
𝑓𝑓(𝑡𝑡, 𝑇𝑇1, 𝑇𝑇2)� = 𝑓𝑓(𝑡𝑡, 𝑇𝑇1, 𝑇𝑇2) + 𝛿𝛿 

−𝛿𝛿 would be the negative floor of the forward rate.  
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8. Learning Objectives: 
3. The candidate will understand: 

• The Quantitative tools and techniques for modeling the term structure of 
interest rates. 

• The standard yield curve models. 
• The tools and techniques for managing interest rate risk. 

 
Learning Outcomes: 
(3b) Understand and apply various one-factor interest rate models. 
 
(3f) Apply the models to price common interest sensitive instruments including 

callable bonds, bond options, caps, floors, and swaptions. 
 
(3i) Understand the implications of replacing LIBOR with alternatives reference rates. 
 
Sources: 
Fixed Income Securities: Valuation, Risk, and Risk Management, Veronesi, Piertro, 2010 
 
QFIQ-131-21: LIBOR replacement: Beyond LIBOR: A Primer on the New Reference 
Rates, BIS, March 2019 
 
Commentary on Question: 
This question was intended to test Candidates' understanding of the interest rate models 
and application. Correct formulas and calculations are required to earn full points. 
Partial credits were awarded if candidates provided correct formulas with wrong 
answers. In general, Candidates did not perform well on this question. 
 
Solution: 
(a) Calculate the price of a 3-month European call option on a zero-coupon bond that 

matures in 10 years with a face value of $100 and a strike price of $55. 
 

Commentary on Question: 
Many candidates used the wrong formula to calculate 𝑍𝑍(0, 𝑡𝑡). Some candidates 
calculated 𝜕𝜕(𝑇𝑇𝑂𝑂; 𝑇𝑇𝐵𝐵) and 𝑆𝑆𝑍𝑍(𝑇𝑇𝑂𝑂; 𝑇𝑇𝐵𝐵) correctly, and partial points were awarded. 
 

 
𝑣𝑣 = 100 ⋅ 𝑍𝑍(0,10)𝑁𝑁(𝑑𝑑1) − 𝐾𝐾 ⋅ 𝑍𝑍(0,0.25)𝑁𝑁�𝑑𝑑1 − 𝑆𝑆𝑍𝑍(𝑇𝑇𝑂𝑂; 𝑇𝑇𝐵𝐵)� 

where 

𝑍𝑍(0, 𝑡𝑡) = 𝑒𝑒− ∫ 𝜕𝜕(0,𝜏𝜏)𝑑𝑑𝜏𝜏𝑡𝑡
0 = 𝑒𝑒−0.05𝑡𝑡−

0.02⋅�1−𝑒𝑒−0.2𝑡𝑡�
0.2  

𝑍𝑍(0,0.25) = 0.98277 
𝑍𝑍(0,10) = 0.55629 

𝐾𝐾 = 55 

𝜕𝜕(𝑇𝑇𝑂𝑂; 𝑇𝑇𝐵𝐵) =
1
𝛾𝛾∗ �1 − 𝑒𝑒−𝛾𝛾∗(𝑇𝑇𝐵𝐵−𝑇𝑇𝑂𝑂)� = 3.65048
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8. Continued 
 

𝑆𝑆𝑍𝑍(𝑇𝑇𝑂𝑂; 𝑇𝑇𝐵𝐵) = 𝜕𝜕(𝑇𝑇𝑂𝑂; 𝑇𝑇𝐵𝐵) ⋅
𝜎𝜎

�2𝛾𝛾∗
⋅ �1 − 𝑒𝑒(−2𝛾𝛾∗𝑇𝑇𝑂𝑂) = 0.03539 

𝑑𝑑1 =
1

𝑆𝑆𝑍𝑍(𝑇𝑇𝑂𝑂; 𝑇𝑇𝐵𝐵)
log �

𝑍𝑍(𝑟𝑟0, 0; 𝑇𝑇𝐵𝐵)
𝐾𝐾 ⋅ 𝑍𝑍(𝑟𝑟0, 0; 𝑇𝑇𝑂𝑂)� +

𝑆𝑆𝑍𝑍(𝑇𝑇𝑂𝑂; 𝑇𝑇𝐵𝐵)
2

= 0.82993 

𝑑𝑑2 = 𝑑𝑑1 − 𝑆𝑆𝑍𝑍(𝑇𝑇𝑂𝑂; 𝑇𝑇𝐵𝐵) = 0.79454 
𝑁𝑁(𝑑𝑑1) = 0.79671, 𝑁𝑁(𝑑𝑑2) = 0.78656 

∴ 𝑣𝑣 = 1.80472 
 
(b) Derive 

 
(i) the stochastic differential equation for the forward rate 𝑓𝑓(𝑡𝑡, 𝑇𝑇) from the 

Hull-White Model. 
 
(ii) the volatility of the forward rate. 
 
Commentary on Question: 
Candidates did not perform well on part (b). Most candidates failed to derive the 
stochastic differential equation, while some correctly derived the forward rate 
volatility. Most candidates were unable to apply It𝐶𝐶�'s lemma in the solution. 
 
An affine structure is given by: 

𝑍𝑍(𝑡𝑡, 𝑇𝑇) = 𝑒𝑒𝐴𝐴(𝑡𝑡,𝑇𝑇)−𝐵𝐵(𝑡𝑡,𝑇𝑇)𝑟𝑟(𝑡𝑡) 
and 

𝜕𝜕(𝑡𝑡, 𝑇𝑇) =
1
𝛾𝛾∗ �1 − 𝑒𝑒−𝛾𝛾∗(𝑇𝑇−𝑡𝑡)� 

Also, 

𝑓𝑓(𝑡𝑡, 𝑇𝑇) = −
𝜕𝜕𝑙𝑙𝑎𝑎𝑍𝑍(𝑡𝑡, 𝑇𝑇)

𝜕𝜕𝑇𝑇
= −

𝜕𝜕𝐴𝐴(𝑡𝑡, 𝑇𝑇)
𝜕𝜕𝑇𝑇

+
𝜕𝜕𝜕𝜕(𝑡𝑡, 𝑇𝑇)

(𝜕𝜕𝑇𝑇) 𝑟𝑟(𝑡𝑡)

= −
𝜕𝜕𝐴𝐴(𝑡𝑡, 𝑇𝑇)

𝜕𝜕𝑇𝑇
+ 𝑒𝑒−𝛾𝛾∗(𝑇𝑇−𝑡𝑡)𝑟𝑟(𝑡𝑡) 

 
Applying Ito�’s lemma, we have the SDE: 
 

𝑑𝑑𝑓𝑓(𝑡𝑡, 𝑇𝑇) = −
𝜕𝜕
𝜕𝜕𝑡𝑡

�
𝜕𝜕𝐴𝐴(𝑡𝑡, 𝑇𝑇)

𝜕𝜕𝑇𝑇
� 𝑑𝑑𝑡𝑡 + 𝛾𝛾∗𝑒𝑒−𝛾𝛾∗(𝑇𝑇−𝑡𝑡)𝑟𝑟(𝑡𝑡)𝑑𝑑𝑡𝑡 + 𝑒𝑒−𝛾𝛾∗(𝑇𝑇−𝑡𝑡)𝑑𝑑𝑟𝑟(𝑡𝑡)

= −
𝜕𝜕
𝜕𝜕𝑡𝑡

�
𝜕𝜕𝐴𝐴(𝑡𝑡, 𝑇𝑇)

𝜕𝜕𝑇𝑇
� 𝑑𝑑𝑡𝑡 + 𝛾𝛾∗𝑒𝑒−𝛾𝛾∗(𝑇𝑇−𝑡𝑡)𝑟𝑟(𝑡𝑡)𝑑𝑑𝑡𝑡

+ 𝑒𝑒−𝛾𝛾∗(𝑇𝑇−𝑡𝑡)[(𝜃𝜃𝑡𝑡 − 𝛾𝛾∗𝑟𝑟𝑡𝑡)𝑑𝑑𝑡𝑡 + 𝜎𝜎𝑑𝑑𝑋𝑋𝑡𝑡]

= �−
𝜕𝜕
𝜕𝜕𝑡𝑡

�
𝜕𝜕𝐴𝐴(𝑡𝑡, 𝑇𝑇)

𝜕𝜕𝑇𝑇
� + 𝑒𝑒−𝛾𝛾∗(𝑇𝑇−𝑡𝑡)𝜃𝜃𝑡𝑡� 𝑑𝑑𝑡𝑡 + 𝑒𝑒−𝛾𝛾∗(𝑇𝑇−𝑡𝑡)𝜎𝜎𝑑𝑑𝑋𝑋𝑡𝑡

= 𝛼𝛼(𝑡𝑡, 𝑇𝑇)𝑑𝑑𝑡𝑡 + 𝑒𝑒−𝛾𝛾∗(𝑇𝑇−𝑡𝑡)𝜎𝜎𝑑𝑑𝑋𝑋𝑡𝑡 
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8. Continued 
 
So, the volatility of forward rate is 

𝑒𝑒−𝛾𝛾∗(𝑇𝑇−𝑡𝑡)𝜎𝜎 
 
(c)  

(i) Verify the technical condition that guarantees the interest rate is always 
positive is satisfied. 

 
(ii) Calculate the bond price 𝑍𝑍(0,10). 

 
Commentary on Question: 
Many candidates successfully identified the technical condition for the positive 
interest rates. However, most candidates did not perform well in the bond price 
derivation. Many candidates derived the formulas for 𝜓𝜓 and 𝑍𝑍(𝑟𝑟, 0; 𝑇𝑇) correctly 
but either made mistakes on 𝐴𝐴(𝑡𝑡; 𝑇𝑇) and 𝜕𝜕(𝑡𝑡; 𝑇𝑇) calculations or didn't finish 
them. 

 
Finding parameters from the question by comparing with the CIR interest rate 
process: 

𝑑𝑑𝑟𝑟(𝑡𝑡) = 𝛾𝛾∗��̅�𝑟∗ − 𝑟𝑟(𝑡𝑡)�𝑑𝑑𝑡𝑡 + �𝛼𝛼 ⋅ 𝑟𝑟(𝑡𝑡)𝑑𝑑𝑋𝑋𝑡𝑡 
𝑑𝑑𝑟𝑟(𝑡𝑡) = 0.1�0.03 − 𝑟𝑟(𝑡𝑡)�𝑑𝑑𝑡𝑡 + �0.004 ⋅ 𝑟𝑟(𝑡𝑡)𝑑𝑑𝑋𝑋𝑡𝑡 

𝛾𝛾∗ ∗ �̅�𝑟∗ = 0.1 ∗ 0.03 = 0.003 >
1
2

∗ 0.004 

𝜕𝜕(𝑡𝑡; 𝑇𝑇) =
2�𝑒𝑒𝜓𝜓1(𝑇𝑇−𝑡𝑡) − 1�

(𝛾𝛾∗ + 𝜓𝜓1)(𝑒𝑒𝜓𝜓1(𝑇𝑇−𝑡𝑡) − 1) + 2𝜓𝜓1
 

𝐴𝐴(𝑡𝑡; 𝑇𝑇) =
2�̅�𝑟𝛾𝛾∗

𝛼𝛼
log �

2𝜓𝜓1𝑒𝑒(𝜓𝜓1+𝛾𝛾∗)�𝑇𝑇−𝑡𝑡
2 �

(𝛾𝛾∗ + 𝜓𝜓1)�𝑒𝑒𝜓𝜓1(𝑇𝑇−𝑡𝑡) − 1� + 2𝜓𝜓1
� 

𝜓𝜓1 = �(𝛾𝛾∗)2 + 2𝛼𝛼 
𝑍𝑍(𝑟𝑟, 0; 𝑇𝑇) = 𝑒𝑒𝐴𝐴(0;𝑇𝑇)−𝐵𝐵(0;𝑇𝑇)×𝑟𝑟(0) 

 𝑨𝑨(𝟎𝟎; 𝑻𝑻) 𝑩𝑩(𝟎𝟎; 𝑻𝑻) 𝒁𝒁(𝒓𝒓, 𝟎𝟎; 𝑻𝑻) 
𝑇𝑇 = 𝟏𝟏𝟎𝟎 -0.1081 6.0765 0.78047 

 
(d)  

(i) Describe ideal reference rate features. 
 

(ii) Explain why LIBOR fails to meet ideal reference rate features. 
 

(iii) Explain the attributes that the new reference rates would incorporate. 
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8. Continued 
 

Commentary on Question: 
Most candidates listed features and attributes partially. Part (d) performance was 
the highest among all parts of the question. 
 
i. Ideal reference rate features 

The ideal reference rate would have to: 
1) Provide a robust and accurate representation of interest rates in core 

money markets that is not susceptible to manipulation 
2) Offer a reference rate for financial contracts that extend beyond the 

money market 
3) Serve as a benchmark for term lending and funding 

 
ii. Why LIBOR fails to meet them 

LIBOR fulfills the second and the third features imperfectly. However, it 
fails to meet the first criterion for four reasons. 
1) LIBOR was constructed from a survey of a small set of banks 

reporting non-binding quotes rather than actual transactions. It is a 
design flaw. 

2) Sparse activity in interbank deposit markets stood, and still stands, in 
the way of a viable transaction-based benchmark based on interbank 
rates. 

3) The increased dispersion of individual bank credit risk since 2007 has 
undermined the adequacy of benchmark such as LIBOR that aim to 
capture common bank risk, even for users seeking a credit risk 
exposure. 

4) Due to regulatory and market efforts to reduce counterparty credit risk 
in interbank exposures, banks have also tilted their funding mix 
towards less risky sources of wholesale funding. 

 
1) Shorter tenor: essentially by moving to O/N markets, where volumes 

are larger than for longer dated tenors such as three months 
2) Moving beyond interbank markets: to add bank borrowing from a 

range of non-bank wholesale counterparties 
3) In some jurisdictions, drawing on secured rather than unsecured 

transactions. The secured transactions could also include banks’ 
repurchase agreements with non-bank wholesale counterparties 
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9. Learning Objectives: 
1. The candidate will understand the foundations of quantitative finance. 
 
3. The candidate will understand: 

• The Quantitative tools and techniques for modeling the term structure of 
interest rates. 

• The standard yield curve models. 
• The tools and techniques for managing interest rate risk. 

 
Learning Outcomes: 
(1c) Understand Ito integral and stochastic differential equations. 
 
(1d) Understand and apply Ito’s Lemma. 
 
(1h) Define and apply the concepts of martingale, market price of risk and measures in 

single and multiple state variable contexts. 
 
(3a) Understand and apply the concepts of risk-neutral measure, forward measure, 

normalization, and the market price of risk, in the pricing of interest rate 
derivatives. 

 
(3f) Apply the models to price common interest sensitive instruments including: 

callable bonds, bond options, caps, floors, and swaptions. 
 
(3j) Understand and apply the Heath-Jarrow-Morton approach including the LIBOR 

Market Model. 
 
Sources: 
Fixed Income Securities: Valuation, Risk, and Risk Management, Veronesi, Pietro, 2010, 
Chapter 20 and Chapter 21 
 
An Introduction to the Mathematics of Financial Derivatives, Hirsa, Ali and Neftci, Salih 
N., 3rd Edition 2nd Printing, 2014, Chapter 9 and Chapter 10 
 
Commentary on Question: 
Commentary is listed underneath each question component.  
 
Solution: 
(a) Describe 

 
(i) Forward Risk Neutral Pricing methodology. 

 
(ii) The LIBOR market model (LMM) and its inputs and methodologies for 

pricing caps, floors and complicated securities.  
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9. Continued 
 
Commentary on Question: 
Candidates performed as expected on this question. Many candidates only 
answered part of the questions in part (ii). 
 

 
(i) In the Forward Risk Neutral Pricing methodology, we express the value of 

securities in terms of the price of another conveniently chosen security 
(change of numeraire), usually a zero-coupon bond with the same 
maturity. Under the T-forward risk neutral dynamics, the forward price for 
delivery at T is a martingale. 
 

(ii) The LIBOR market model specifies the dynamics of LIBOR-based 
forward rates. Each forward rate with maturity T is a martingale and 
follows a lognormal diffusion process under the T-forward risk neutral 
dynamics. 
 
LMM provides a no arbitrage derivation of the Black formula to price caps 
and floors. The inputs are caplet implied volatilities and the current term 
structure of interest.  
 
One can use Monte Carlo simulations to price complicated securities. 

 
(b) Compute the value of the above caplet at time 0 under the LMM. 
 

Commentary on Question: 
Candidates performed as expected on this question. Note that in the caplet pricing 
formula provided in the formula sheet, 𝑓𝑓𝑛𝑛(0, 𝜏𝜏, 𝑇𝑇) is n-times compounded, not 
continuously compounded. 
 
Caplet(0; 𝑇𝑇𝑖𝑖+1) = 𝑁𝑁∆ 𝑍𝑍(0, 𝑇𝑇𝑖𝑖+1)[𝑓𝑓𝑛𝑛(0, 𝑇𝑇𝑖𝑖, 𝑇𝑇𝑖𝑖+1) 𝑁𝑁(𝑑𝑑1) − 𝑟𝑟𝐾𝐾𝑁𝑁(𝑑𝑑2)], where 

𝑁𝑁 = 100,000, 𝑇𝑇𝑖𝑖 = 1.5, 𝑇𝑇𝑖𝑖+1 = 2, ∆= 2 − 1.5 = 0.5, 𝑎𝑎 = 1 𝛥𝛥⁄ = 2, 𝑟𝑟𝐾𝐾 = 0.03. 
 

To calculate 𝑓𝑓2(0, 1.5, 2), we must first calculate the price of zero-coupon bonds. 
 

Note: Because no compounding frequency is specified for the LIBOR spot rate in 
this question, points were awarded for all compounding frequencies in the 
calculation of 𝑍𝑍(0,1.5) and 𝑍𝑍(0,2). In this solution, we present a version that 
assumes continuous compounding. 

 

𝑍𝑍(𝜏𝜏, 𝑇𝑇) = exp�−𝑟𝑟(𝑇𝑇 − 𝜏𝜏)� 
𝑍𝑍(0, 1.5) = exp(−0.02 × 1.5) = 0.9704 

𝑍𝑍(0, 2) = exp(−0.02 × 2) = 0.9608
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9. Continued 
 

𝑓𝑓𝑛𝑛(0, 𝑇𝑇𝑖𝑖, 𝑇𝑇𝑖𝑖+1) is the n-times compounded forward rate at time 0 for an investment 
at 𝑇𝑇𝑖𝑖 maturing at 𝑇𝑇𝑖𝑖+1. 

𝑓𝑓2(0, 1.5, 2) = 2 ×
𝑍𝑍(0, 1.5) −  𝑍𝑍(0, 2)

𝑍𝑍(0, 1.5) = 0.0201 

 

Next, we calculate 𝑁𝑁(𝑑𝑑1) and 𝑁𝑁(𝑑𝑑2): 
𝜎𝜎𝜕𝜕 �𝑇𝑇𝑖𝑖 = 0.3 × √1.5 = 0.3674 

𝑑𝑑1 =
1

𝜎𝜎𝜕𝜕�𝑇𝑇𝑖𝑖 
𝑙𝑙𝑎𝑎 �

𝑓𝑓2(0, 𝑇𝑇𝑖𝑖 𝑇𝑇𝑖𝑖+1)
𝑟𝑟𝑘𝑘

� +
1
2

𝜎𝜎𝜕𝜕�𝑇𝑇𝑖𝑖 = −0.9062 

𝑑𝑑2 = 𝑑𝑑1 − 𝜎𝜎𝜕𝜕�𝑇𝑇𝑖𝑖 = −1.2736 
𝑁𝑁(𝑑𝑑1) = 0.1824, 𝑁𝑁(𝑑𝑑2) = 0.1014 

 

The price of the caplet is then 
100,000 × 0.5 × 0.9608[0.0201 × 0.1824 − 0.03 × 0.1014] = 29.99 

 
(c) Express the convexity adjustment term in terms of 𝑓𝑓𝑛𝑛 (0, 𝜏𝜏 , 𝑇𝑇), 𝜎𝜎𝜕𝜕, ∆ and 𝜏𝜏. 
 

Commentary on Question: 
Candidates performed poorly in this question. In this question, candidates are 
asked to express the expected spot rate 𝑟𝑟𝑛𝑛(𝜏𝜏, 𝑇𝑇) under the τ-forward risk neutral 
dynamics as the forward rate 𝑓𝑓𝑛𝑛(0, 𝜏𝜏 , 𝑇𝑇) plus a convexity adjustment. Many 
candidates wrote down the formula for expressing continuously compounded 
forward rate in terms of the futures rate, which is not correct. 
 

𝐸𝐸𝜕𝜕
∗𝜏𝜏[𝑟𝑟𝑛𝑛(𝜏𝜏, 𝑇𝑇)] ≈ 𝑓𝑓𝑛𝑛 (0, 𝜏𝜏 , 𝑇𝑇) +

𝑓𝑓𝑛𝑛 (0, 𝜏𝜏 , 𝑇𝑇)2 ∆
1 + 𝑓𝑓𝑛𝑛 (0, 𝜏𝜏 , 𝑇𝑇)∆

 𝜎𝜎𝜕𝜕
2 𝜏𝜏 

 
(d) Calculate the value of the LIBOR-in-arrears swap by using part (c). 

 
Commentary on Question: 
Most candidates did not attempt this question. 

 
Because it is an in-arrears swap, convexity adjustment must be made. The 
convexity adjustment changes the forward rate assumed at time 𝑇𝑇𝑖𝑖 from 0.03 to 
the following 

0.03 +
0.032 ×  1 × (0.2)2 × 𝑇𝑇𝑖𝑖

1 + 0.03 × 1
= 0.03 + 0.00003495 𝑇𝑇𝑖𝑖 

where Δ = 1, 𝑇𝑇𝑖𝑖 = 1, 2, 3, 4. 
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9. Continued 
 

 Year 1 Year 2 Year 3 Year 4 
Fixed 0.03 0.03 0.03 0.03 

Floating 0.03003495 0.03006990 0.03010485 0.03013980 
Fixed – Floating –0.00003495 –0.00006990 –0.00010485 –0.00013981 

Discount Factor 
1

1.03
 

1
1.032 

1
1.033 

1
1.034 

 

The value of the LIBOR-in-arrears swap is then 
 

−$100 million × �
0.00003495

1.03
+

0.00006990
1.032 +

0.00010485
1.033 +

0.00013981
1.034 �

= $ − 31,999.59 
 
(e)  

(i) Show by using Ito’s lemma that 
 

𝑑𝑑𝑆𝑆0,2(𝑡𝑡) = �
𝜕𝜕𝑆𝑆0,2(𝑡𝑡)

𝜕𝜕𝑑𝑑𝑖𝑖

2

𝑖𝑖=1

𝜎𝜎𝑖𝑖(𝑡𝑡)𝑑𝑑𝑖𝑖(𝑡𝑡)𝑑𝑑𝑊𝑊𝑖𝑖(𝑡𝑡) 

 
Hint: Consider the diffusion term of 𝑑𝑑𝑆𝑆0,2(𝑡𝑡) and use the following 
differential equations: 

 
𝑑𝑑𝑑𝑑𝑖𝑖(𝑡𝑡) = 𝜇𝜇𝑖𝑖

𝐴𝐴(𝑡𝑡)𝑑𝑑𝑖𝑖(𝑡𝑡)𝑑𝑑𝑡𝑡 + 𝜎𝜎𝑖𝑖(𝑡𝑡)𝑑𝑑𝑖𝑖(𝑡𝑡)𝑑𝑑𝑊𝑊𝑖𝑖(𝑡𝑡); i = 1, 2 
 

(ii) Show by using part (i) and 𝑑𝑑𝑆𝑆0,2(𝑡𝑡) = 𝜎𝜎0,2(𝑡𝑡)𝑆𝑆0,2(𝑡𝑡)𝑑𝑑𝑊𝑊(𝑡𝑡) that  
 

 

𝜎𝜎0,2(𝑡𝑡)2 =
∑ 𝜕𝜕𝑆𝑆0,2(𝑡𝑡)

𝜕𝜕𝑑𝑑𝑖𝑖

𝜕𝜕𝑆𝑆0,2(𝑡𝑡)
𝜕𝜕𝑑𝑑𝑗𝑗

2
𝑖𝑖,𝑗𝑗=1 𝜎𝜎𝑖𝑖(𝑡𝑡)𝜎𝜎𝑗𝑗(𝑡𝑡)𝑑𝑑𝑖𝑖(𝑡𝑡)𝑑𝑑𝑗𝑗(𝑡𝑡)𝜌𝜌𝑖𝑖,𝑗𝑗

𝑆𝑆0,2(𝑡𝑡)2  

 
where 𝜌𝜌1,2 = 𝜌𝜌2,1 = 𝜌𝜌 and 𝜌𝜌1,1 = 𝜌𝜌2,2 = 1 

 
(iii) Assess, by considering the distribution of 𝜎𝜎0,2(𝑡𝑡) in part (ii) whether the 

LMM and the SMM are compatible. 
 

Commentary on Question: 
Most candidates did not attempt this question. 
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9. Continued 
 

(i) By Ito’s Lemma 

𝑑𝑑𝑆𝑆0,2(𝑡𝑡) = �
𝜕𝜕𝑆𝑆0,2(𝑡𝑡)

𝜕𝜕𝑑𝑑𝑖𝑖

2

𝑖𝑖=1

𝑑𝑑𝑑𝑑𝑖𝑖(𝑡𝑡) + (… )𝑑𝑑𝑡𝑡 

Substiute the below SDE into 𝑑𝑑𝑆𝑆0,2(𝑡𝑡), we obtain 
   𝑑𝑑𝑑𝑑𝑖𝑖(𝑡𝑡) = 𝜇𝜇𝑖𝑖

𝐴𝐴(𝑡𝑡)𝑑𝑑𝑖𝑖(𝑡𝑡)𝑑𝑑𝑡𝑡 + 𝜎𝜎𝑖𝑖(𝑡𝑡)𝑑𝑑𝑖𝑖(𝑡𝑡)𝑑𝑑𝑊𝑊𝑖𝑖
𝐴𝐴(𝑡𝑡) 

All the terms containing 𝑑𝑑𝑡𝑡 disappear because 𝑆𝑆0,2(𝑡𝑡) is a martingale and 
the drift terms must be 0. 𝑊𝑊𝑖𝑖

𝐴𝐴(𝑡𝑡) are Brownian motions under the swap 
measure 𝜕𝜕𝐴𝐴. Therefore,  

𝑑𝑑𝑆𝑆0,2(𝑡𝑡) = �
𝜕𝜕𝑆𝑆0,2(𝑡𝑡)

𝜕𝜕𝑑𝑑𝑖𝑖

2

𝑖𝑖=1

𝜎𝜎𝑖𝑖(𝑡𝑡)𝑑𝑑𝑖𝑖(𝑡𝑡)𝑑𝑑𝑊𝑊𝑖𝑖
𝐴𝐴(𝑡𝑡) 

 
(ii) From 𝑑𝑑𝑆𝑆0,2(𝑡𝑡) = 𝜎𝜎0,2(𝑡𝑡)𝑆𝑆0,2(𝑡𝑡)𝑑𝑑𝑊𝑊(𝑡𝑡), we obtain  

𝜎𝜎0,2(𝑡𝑡)𝑑𝑑𝑊𝑊(𝑡𝑡) =
𝑑𝑑𝑆𝑆0,2(𝑡𝑡)
𝑆𝑆0,2(𝑡𝑡)  

Square both sides, we have 

𝜎𝜎0,2(𝑡𝑡)2𝑑𝑑𝑡𝑡 =
𝑑𝑑𝑆𝑆0,2(𝑡𝑡)
𝑆𝑆0,2(𝑡𝑡)

 
𝑑𝑑𝑆𝑆0,2(𝑡𝑡)
𝑆𝑆0,2(𝑡𝑡)

 

=
∑ 𝜕𝜕𝑆𝑆0,2(𝑡𝑡)

𝜕𝜕𝑑𝑑𝑖𝑖
2
𝑖𝑖=1 𝜎𝜎𝑖𝑖(𝑡𝑡)𝑑𝑑𝑖𝑖(𝑡𝑡)𝑑𝑑𝑊𝑊𝑖𝑖

𝐴𝐴(𝑡𝑡)

𝑆𝑆0,2(𝑡𝑡)
 
∑ 𝜕𝜕𝑆𝑆0,2(𝑡𝑡)

𝜕𝜕𝑑𝑑𝑗𝑗
2
𝑗𝑗=1 𝜎𝜎𝑖𝑖(𝑡𝑡)𝑑𝑑𝑗𝑗(𝑡𝑡)𝑑𝑑𝑊𝑊𝑗𝑗

𝐴𝐴(𝑡𝑡)

𝑆𝑆0,2(𝑡𝑡)
 

=
∑ 𝜕𝜕𝑆𝑆0,2(𝑡𝑡)

𝜕𝜕𝑑𝑑𝑖𝑖

𝜕𝜕𝑆𝑆0,2(𝑡𝑡)
𝜕𝜕𝑑𝑑𝑗𝑗

2
𝑖𝑖,𝑗𝑗=1 𝜎𝜎𝑖𝑖(𝑡𝑡)𝜎𝜎𝑗𝑗(𝑡𝑡)𝑑𝑑𝑖𝑖(𝑡𝑡)𝑑𝑑𝑗𝑗(𝑡𝑡)𝜌𝜌𝑖𝑖,𝑗𝑗

𝑆𝑆0,2(𝑡𝑡)2 𝑑𝑑𝑡𝑡 

Since 𝑑𝑑𝑊𝑊𝑖𝑖
𝐴𝐴(𝑡𝑡)𝑑𝑑𝑊𝑊𝑗𝑗

𝐴𝐴(𝑡𝑡) = 𝜌𝜌𝑖𝑖,𝑗𝑗𝑑𝑑𝑡𝑡. 
 
(iii) In the LMM, 𝜎𝜎0,2(𝑡𝑡) is clearly not a deterministic function, which 

shows that the swap rate 𝑆𝑆0,2(𝑡𝑡)does not follow a log-normal process 
under 𝜕𝜕𝐴𝐴. Therefore, LMM is not compatible with the SMM.   
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10. Learning Objectives: 
4. The candidate will understand: 

• How to apply the standard models for pricing financial derivatives. 
• The implications for option pricing when markets do not satisfy the common 

assumptions used in option pricing theory. 
• How to evaluate risk exposures and the issues in hedging them. 

 
Learning Outcomes: 
(4c) Demonstrate an understating of the different approaches to hedging – static and 

dynamic. 
 
(4e) Analyze the Greeks of common option strategies. 
 
(4g) Describe and explain some approaches for relaxing the assumptions used in the 

Black-Scholes-Merton formula. 
 
Sources: 
The Volatility Smile, Derman, Emanuel and Miller, Michael B., 2016 
 
QFIQ-114-17: Chapter 2, pp. 162-173 and 223-225 of Frequently Asked Questions in 
Quantitative Finance, Wilmott, Paul, 2nd Edition, 2009 
 
Commentary on Question: 
Commentary listed underneath question component. 
 
Solution: 
(a) Determine the notional amount of the variance swap necessary to hedge the 

existing volatility swap.  Assume you can sell variance swaps on the ABC Index 
at the strike of 17%. 

 
Commentary on Question: 
This is a straightforward retrieval question that tests candidates’ basic 
understanding of hedging. Candidates did well on the question. Most candidates 
used the correct formula to calculate the notional of the variance swap. 
 

The notional of the variance swap is  

𝑁𝑁𝑣𝑣𝑣𝑣𝑟𝑟 =
1

2𝜎𝜎𝐾𝐾
𝑁𝑁𝑣𝑣𝑣𝑣𝑣𝑣 

=
1

2(. 17) (1,000,000) 

 
= 2,941,176 
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10. Continued 
 

(b) Determine the payoff on the hedged position if the realized volatility is 24%. 
 

Commentary on Question: 
This question tests candidates understanding of how realized volatility impacts 
hedging position. Candidate did fairly well on this question. Full points were 
awarded to candidates who used the correct notionals in the formula.   
 
The payoff of the hedged position is 

𝜋𝜋 = 𝑁𝑁𝑣𝑣𝑣𝑣𝑣𝑣(𝜎𝜎𝐹𝐹 − 𝜎𝜎𝐾𝐾) − 𝑁𝑁𝑣𝑣𝑣𝑣𝑟𝑟(𝜎𝜎𝐹𝐹
2 − 𝜎𝜎𝐾𝐾

2) 
 

= 1,000,000(. 24 − .17) − 2,941,176(. 242 −. 172) 
 

= −14,411.75 
 
(c) Show the present value of P&L at time 𝑡𝑡0 is given by 
 

𝜕𝜕𝑉𝑉[𝜕𝜕&𝐿𝐿(𝑣𝑣, ℎ)] = 𝑉𝑉ℎ − 𝑉𝑉𝑖𝑖 + 1
2 ∫ 𝑒𝑒{−𝑟𝑟(𝑡𝑡−𝑡𝑡0)}𝑇𝑇

𝑡𝑡0
 Γℎ𝑆𝑆2(𝜎𝜎𝐹𝐹

2 − 𝜎𝜎ℎ
2)𝑑𝑑𝑡𝑡. 

 
Commentary on Question: 
To get full points for this question, candidates need to (1) clearly demonstrate 
how Ito’s Lemma is applied in hedging a long volatility swap; (2) identify what 
needs to be satisfied for BSM with hedged volatility; (3) correctly take present 
value of P&L and integrate over the life of the option. This question is 
challenging. Very few candidates attempted this question.  

 
dP&L = dVi − ΔhdS − ΔℎSDdt + [(ΔhS − Vh) + (Vh − Vi)]rdt

= (dVh − dVh) + dVi − ΔhdS − ΔhSDdt + ΔhSrdt − Vhrdt + (Vh
− Vi)rdt
= dVh − ΔhdS + Δh(r − D)Sdt − Vhrdt + (dV𝑖𝑖 − dVh) + (Vh − Vi)rdt 

By Ito’s Lemma 

(dVh − ΔℎdS) = (Θh +
1
2

ΓhS2σr
2)dt 

 
Substituting this into P&L gives 
 

d[P&L] = (Θh +
1
2

ΓhS2σr
2)dt + Δh(r − D)Sdt − Vhrdt + (dVi − dVh) + (Vℎ − Vi)rdt

= (Θh + Δh(r − D)S +
1
2

ΓhS2σr
2 − Vhr)dt + (dVi − dVh) + (Vh − Vi)rdt 
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10. Continued 
 
The BSM with hedged volatility satisfies 

Θh + Δh(r − D)S +
1
2

ΓhS2σh
2 − rVh = 0 

 
Thus 
 

d[P&L] =
1
2

ΓhS2(σr
2 − σh

2)dt + (dVi − dVh) + (Vh − Vi)rdt

=
1
2

ΓhS2(σr
2 − σh

2)dt + ertd[e−rt(Vh − Vi)] 

 
Take present values to obtain 
 

𝑑𝑑𝜕𝜕𝑉𝑉[𝜕𝜕&𝐿𝐿] = 𝑒𝑒−𝑟𝑟(𝑡𝑡−𝑡𝑡0) 1
2

ΓhS2(σr
2 − σh

2)dt + ert0d[e−rt(Vh − Vi)] 

 
and integrate over the life of the option to get 
 

PV[P&L(i, h)] = Vh − Vi +
1
2

� 𝑒𝑒−𝑟𝑟(𝑡𝑡−𝑡𝑡0)
𝑇𝑇

𝑡𝑡0

ΓhS2(σr
2 − σh

2)dt 

 
(d) Calculate the standard deviation of the hedging error when rebalancing daily. 

 
Commentary on Question: 
This question tests candidates’ understanding of rebalancing technique and 
calculation. Most candidates used the correct formula to calculate the vega of the 
option as well the standard deviation of the hedging error but failed to identify 
that daily rebalancing for 3 months results in a total number of 63 reblancings.  

 
Calculate the vega of the option 

∂C
∂σ

=
S√τ
√2π

𝑒𝑒−1
2𝑑𝑑1

2
 

 
= 797.09 

The standard deviation of the hedging error is approximately 

σHE ≈ �
𝜋𝜋
4

𝜎𝜎
√𝑎𝑎

𝜕𝜕𝐶𝐶
𝜕𝜕𝜎𝜎

=
141.28

√𝑎𝑎
 

We are interested in daily rebalancing for 3 months, or 63 rebalancings. Hence 
σHE = 17.80 
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10. Continued 
 
(e) Calculate the price of the call option assuming transaction costs of 1 basis point 

and daily rebalancing.   
 

Commentary on Question: 
This question tests candidates’ comprehension of transaction costs and its impact 
on hedging. Most candidates who attempted this question made the similar 
mistake as part d, where the total number of rebalancings should be 63.    

 
We have 
 

σ� ≈ σ − k� 2
𝜋𝜋𝑑𝑑𝑡𝑡

= 0.20 − 0.0001� 2
𝜋𝜋𝑑𝑑𝑡𝑡

= 0.20 − 0.0001�2(63)
𝜋𝜋

= 0.1937 

Thus 
 

C(S, K, v)� = 4000 × N(0.04984) − 4000 × N(−0.04984) = 159.01 
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11. Learning Objectives: 
4. The candidate will understand: 

• How to apply the standard models for pricing financial derivatives. 
• The implications for option pricing when markets do not satisfy the common 

assumptions used in option pricing theory. 
• How to evaluate risk exposures and the issues in hedging them. 

 
Learning Outcomes: 
(4a) Demonstrate an understanding of option pricing techniques and theory for equity 

derivatives. 
 
(4c) Demonstrate an understating of the different approaches to hedging – static and 

dynamic. 
 
(4d) Demonstrate an understanding of how to delta hedge, and the interplay between 

hedging assumptions and hedging outcomes. 
 
(4e) Analyze the Greeks of common option strategies. 
 
(4i) Define and explain the concept of volatility smile and some arguments for its 

existence. 
 
Sources: 
The Volatility Smile, Derman Miller Park, Ch 6, Ch 7, Ch 9, Ch 10, page 169 
 
QFIQ-120-19 Chapter 6 and 7 of Pricing and Hedging, page 133 
 
Commentary on Question: 
Commentary listed underneath question component. 
 
Solution: 
(a)  

(i) Identify an arbitrage opportunity that is implied by your analyst’s curve.  
 

(ii) Show how you can take advantage of the arbitrage opportunity implied by 
your analyst’s curve. 

 
Commentary on Question: 
Majority of candidates correctly calculated the put option prices.  Some 
candidates lost points because of not explaining the profit resulting from the 
strategy, or because of not explaining why the arbitrage opportunity exists or not 
stating clearly that it should be traded until the market corrects itself. Partial 
credits are granted. 
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11. Continued 
 

60 Strike Put = 6.65 
70 Strike Put = 6.52 
80 Strike Put = 7.26 
90 Strike Put = 8.97 
100 Strike Put = 11.92 
 
Based on this curve, an arbitrage opportunity exists as the put option price -
should increase as the strike increases which is not the case from the 60-strike 
put to the 70-strike put. Therefore, if the 70-strike put is reasonable then the 
60-strike put is overpriced, otherwise the 70-strike put is underpriced. 
 
To take advantage of this opportunity, one can trade a put spread by selling a 
60-strike put and buying 70-strike put to lock in 6.65-6.52 =0.13 in profit for 
each spread traded.  This should be traded as much as possible until the 
market price adjusts to eliminate this arbitrage opportunity. 
 
There are no other arbitrage opportunities as the remainder of the put prices 
increase with the strike. 

 
(b) Calculate the initial number of shares you need to trade.  Clarify your trade as 

“buy” or “sell”.    
 

Commentary on Question: 
Majority of candidates did not have the correct formula for the Put Delta and 
instead utilized the ∆𝜕𝜕𝑢𝑢𝑡𝑡𝜕𝜕𝑆𝑆𝑀𝑀 + as the Put Delta.  
 
Put Delta = ∆𝜕𝜕𝑢𝑢𝑡𝑡𝜕𝜕𝑆𝑆𝑀𝑀 +  

𝜕𝜕𝜕𝜕𝑢𝑢𝑡𝑡𝜕𝜕𝑆𝑆𝑀𝑀

𝜕𝜕𝜎𝜎

𝜕𝜕𝜎𝜎

𝜕𝜕𝑆𝑆
 

where 
∆𝜕𝜕𝑢𝑢𝑡𝑡𝜕𝜕𝑆𝑆𝑀𝑀= −𝑁𝑁(−𝑑𝑑1)  

= -0.4404 
 

𝜕𝜕𝜕𝜕𝑢𝑢𝑡𝑡𝜕𝜕𝑆𝑆𝑀𝑀

𝜕𝜕𝜎𝜎
 = 𝑉𝑉𝑒𝑒𝑔𝑔𝑉𝑉𝜕𝜕𝑆𝑆𝑀𝑀 

= 0.01 ∗ 𝑆𝑆√𝑇𝑇 − 𝑡𝑡𝑁𝑁′(𝑑𝑑1)  
= 0.01 ∗ 100 ∗ √1 1

√2𝜋𝜋
∗ 𝑒𝑒−0.152

2  
= 0.3945 
 

 𝜕𝜕𝜎𝜎
𝜕𝜕𝑆𝑆

 = 0.3∗1.6
𝐾𝐾1.6 𝑆𝑆1.6−1 

  =0.3∗1.6

1001.6 1001.6−1 
  =0.0048 
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11. Continued 
 
 Put Delta  = 1000*(-0.4404 + 0.3945*0.0048) 
   = -438.49 
  

Therefore, the trade is to sell 438.49 shares (rounding is acceptable). 
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12. Learning Objectives: 
4. The candidate will understand: 

• How to apply the standard models for pricing financial derivatives. 
• The implications for option pricing when markets do not satisfy the common 

assumptions used in option pricing theory. 
• How to evaluate risk exposures and the issues in hedging them. 

 
Learning Outcomes: 
(4e) Analyze the Greeks of common option strategies. 
 
(4i) Define and explain the concept of volatility smile and some arguments for its 

existence. 
 
(4j) Compare and contrast “floating” and “sticky” smiles. 
 
Sources: 
QFIQ-120-19: Pricing and Hedging Financial Derivatives, Marroni, L. & Perdomo, I 
 
Commentary on Question: 
This question tests candidate’s knowledge of volatility skew and the hedging strategies in 
light of the skew.  
 
Solution: 
(a)  

(i) Identify the common name of the above observation. 
 

(ii) Explain one reason for this observation. 
 

Commentary on Question: 
Candidates performed as expected on this part.  

 
(i) The observation is referred to as volatility skew, where volatilities of OTM put 
are higher than ATM volatilities which are higher than volatilities of OTM calls.  
 
(ii) Lower strike options tend to have higher implied volatilities than higher strike 
options, which can be thought of as the additional risk premium the buyer is 
willing to pay for the protection from a market downturn. This reflects the typical 
belief that a falling stock mark is likely to be more volatile than a rising market 

 
(b) Your colleague made the following comment: 
 

“If the volatility is constant, there is no need to volatility hedge.  But since the 
volatility can change by strike price, it’s also important to ensure that the total 
Vega exposure of the portfolio is zero.” 

 
Critique the comment of your colleague.
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12. Continued 
 

Commentary on Question: 
Candidates performed below expectations on this part. 
 
The colleague is not correct about the volatility hedging strategy being all about 
eliminating the Vega exposure.   
 
Making the portfolio Vega-neutral can only immunize one’s position with respect 
to parallel shifts in the volatility skew but is not going to mitigate the risk of a 
change in the slope or the convexity of the volatility skew.   
 
Vega hedging is not simply offsetting the overall Vega exposure. It needs to focus 
on higher-order derivatives such as dVega/dSpot or dVega/dVol. 

 
(c)  

(i) Choose one strategy from the above that you think is the most appropriate.  
Explain why. 
 

(ii) Plot the Vega as a function of the underlying price.   
 

(iii) Calculate the maximum and minimum in the plot. 
 

Commentary on Question: 
Candidates performed below expectations on this part because many did not 
construct the Vega plot on the Excel sheet. 

 
(i) It is a steepening volatility skew. Therefore, a Risk Reversal strategy 

should be used, consisting of a long position in the 110 Call and a short 
position in the 90 Put option. 

 
(ii) Given 𝑉𝑉𝑒𝑒𝑔𝑔𝑉𝑉 =  𝑆𝑆 √𝑡𝑡 𝑁𝑁′(𝑑𝑑1) where 
 

𝑁𝑁′(𝑥𝑥) =
1

√2𝜋𝜋
𝑒𝑒−𝑥𝑥2/2 

 
which is a symmetric function. Vega of the Call/Put option must be 
symmetric. 

 
The maximum should be reached at around S > 100, the reason being that the 
Vega of a short 90 Put is increasing when S > 90, which contributes to the 
increase of the sum.    
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12. Continued 
 

Similarly, the minimum is expected to be reached at around S < 90 as the 
decrease in the Call Vega when S < 110 which contributes to the decrease of 
the sum. 

 
The plot should look as below. 

 

  
 

 
  

Note: Only partial values were shown in the above table for illustration 
purpose.   
 

(iii) Based on the above table: 
 Maximum Risk Reversal Vega = 15.01 @ S = 114 
 Minimum Risk Reversal Vega = -20.07 @ S = 83 

  
(d)  

(i) Choose one strategy from the above that you think is the most appropriate.  
Explain why. 
 

(ii) Describe the construction of the strategy.  Specify the long/short position 
of the strategies involved. 
 

(iii) Explain why the strategy is not Vega-neutral and describe, without 
calculation, how to construct it to be Vega-neutral  

a. Index spot price (S) 45 46 … 82 83 84 … 113 114 115 … 143 144
b.  Vega (call 110 with σ = 18%) 0.00 0.00 … 2.22 2.74 3.36 … 29.94 29.41 28.75 … 3.56 3.17
c.  Vega (put 90 with σ = 30%) 0.10 0.14 … 22.21 22.81 23.35 … 15.03 14.40 13.78 … 2.64 2.46
d.  Risk Reversal Vega = b - c -0.10 -0.14 … -19.99 -20.07 -19.99 … 14.91 15.01 14.97 … 0.92 0.72
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12. Continued 
 
Commentary on Question: 
Many candidates were able to identify Butterfly strategy as the appropriate 
strategy, but few were able to explain how to make the strategy vega-neural.  

 
(i) It is a change in convexity in the volatility skew. Therefore, a Butterfly is 

most appropriate due to its high level of 𝑑𝑑𝑉𝑉𝑒𝑒𝑔𝑔𝑉𝑉/𝑑𝑑𝑉𝑉𝐶𝐶𝑙𝑙 
 

(ii) The Butterfly can be constructed using the long position in a strangle and 
a short position in a straddle.  In the 90-100-110 butterfly, we take long 
110 Call and a 90 Put, short a 100-strike straddle. 

 
(iii) The Butterfly constructed this way is not Vega-neutral as the vega of the 

straddle is higher than the strangle.  To construct a vega-neutral Butterfly, 
we can set the ratio of the notional of the straddle over the notional of the 
strangle equal to the ratio of the vega: 

𝑆𝑆𝑡𝑡𝑟𝑟𝑉𝑉𝑑𝑑𝑑𝑑𝑙𝑙𝑒𝑒 𝑎𝑎𝐶𝐶𝑡𝑡𝑣𝑣𝐶𝐶𝑎𝑎𝑉𝑉𝑙𝑙
𝑆𝑆𝑡𝑡𝑟𝑟𝑉𝑉𝑎𝑎𝑔𝑔𝑙𝑙𝑒𝑒 𝑎𝑎𝐶𝐶𝑡𝑡𝑣𝑣𝐶𝐶𝑎𝑎𝑉𝑉𝑙𝑙

=  
𝑆𝑆𝑡𝑡𝑟𝑟𝑉𝑉𝑑𝑑𝑑𝑑𝑙𝑙𝑒𝑒 𝑉𝑉𝑒𝑒𝑔𝑔𝑉𝑉
𝑆𝑆𝑡𝑡𝑟𝑟𝑉𝑉𝑎𝑎𝑔𝑔𝑙𝑙𝑒𝑒 𝑉𝑉𝑒𝑒𝑔𝑔𝑉𝑉
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13. Learning Objectives: 
4. The candidate will understand: 

• How to apply the standard models for pricing financial derivatives. 
• The implications for option pricing when markets do not satisfy the common 

assumptions used in option pricing theory. 
• How to evaluate risk exposures and the issues in hedging them. 

 
Learning Outcomes: 
(4a) Demonstrate an understanding of option pricing techniques and theory for equity 

derivatives. 
 
(4d) Demonstrate an understanding of how to delta hedge, and the interplay between 

hedging assumptions and hedging outcomes. 
 
(4e) Analyze the Greeks of common option strategies. 
 
(4h) Compare and contrast the various kinds of volatility, e.gl, actual, realized, implied 

and forward, etc. 
 
Sources: 
The Volatility Smile, Derman, Emanuel and Miller, Michael B., 2016 
 
QFIQ-120-19: Chapters 6 and 7 of Pricing and Hedging Financial Derivatives, Marroni, 
Leonardo and Perdomo, Irene, 2014 
 
Commentary on Question: 
Commentary listed underneath question component. 
 
Solution: 
(a) Construct a strategy to replicate the payoff of the contingent claim with only 

European options on Stock XYZ. 
 

Commentary on Question: 
Most candidates were able to identify the correct European call positions to 
replicate the contingent claim. Partial credit is granted for a correct but 
incomplete specification of parameters (long/short, strike, maturity) strategy. 
 
The strategy required to replicate the payoff of the contingent claim consists of 
the following positions: 

• A long position in a 100-strike one-year European call 
• A short position in a 120-strike one-year European call 
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13. Continued 
 

(b) Compare and contrast realized volatility and implied volatility.  
 

Commentary on Question: 
Most candidates answered this question correctly and were able to provide the 
clear definition for the two types of volatilities.  
 
Implied volatility is a parameter that matches the model option price to the market 
price using the Black-Scholes Model equation. Implied volatility is derived from 
the present and expected future data. 
 
Realized volatility is a statistic that measures the standard deviation of returns for 
a past period. Realized volatility is derived from the past/historical data.  

 
(c)  

(i) Calculate the Delta of this contingent claim. 
 
(ii) Explain why the Delta is positive. 

 
Commentary on Question: 
Most candidates understood that the Delta of the contingent claim was the sum of 
the Deltas of the long and short European call positions from part (a). Some 
candidates did not calculate the correct values of the delta for the long and short 
European call positions.  
 
For the overall Delta of the contingent claim, it was important to understand the 
relationship of the Delta of the two European call positions and how that impacts 
the overall Delta of the contingent claim. Most candidates only noted one or the 
other.  

 
The Delta of the contingent claim is calculated as the sum of the delta of the 
replicating strategy in which 

 

ΔCall(K=100) = N(d1) = N �
ln 110

100 + �0 + 0.32

2 � (1)

0.3√1
� = N(0.46770) = 0.68 

 

ΔCall(K=120) = N(d1) = N �
ln 110

120 + �0 + 0.32

2 � (1)

0.3√1
� = N(−0.14004)

= 0.44432 
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13. Continued 
 
Therefore, the Delta of the contingent claim is: 

ΔClaim =  +ΔCall(K=100) − ΔCall(K=120) 
= +0.68 − 0.44432 
= 0.23568 ≈ 0.24  

 
The overall Delta of the contingent claim is positive because: 

• A call option with a lower strike will always have a Delta that is equal to 
or higher than a call with a higher strike. 

• Since the call option that is long has a higher Delta than the call option 
that is short, the resulting net Delta of the contingent claim is positive. 

 
(d) Regarding a long position in the contingent claims, your colleague made the 

following comments: 
 

• Comment 1:  As the price of the underlying stock moves away from the price 
range within the two strike prices, we expect the Delta of the contingent claim 
to converge to zero. 

• Comment 2:  The net Gamma exposure of the contingent claim is always 
positive. 

 
Assess each of your colleague’s comments above.  

 
Commentary on Question: 
For Comment 1, it could be successfully approached by either describing the 
Delta for the two European call options and the net impact of those two Deltas or 
describing the Delta of the contingent claim. Most candidates took the first 
approach.  
 
For Comment 2, it is important to state when Gamma for the contingent claim 
goes from negative to positive and vice versa. Some candidates stated the Gamma 
could be negative without providing additional details.  

 
Comment 1 is correct.  
 
This is because any further movement of the price of the underlying asset above 
the higher strike of 120 or below the low strike of 100 will not have any 
meaningful effect on the contingent claim payoff.  
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13. Continued 
 
Comment 2 is incorrect.  
 
The net Gamma exposure of the contingent claim will switch from positive to 
negative when the underlying price moves from the lower strike of 100 to the 
higher strike of 120. Conversely, the net Gamma exposure of the contingent claim 
will switch from negative to positive when the underlying price moves from the 
higher strike of 120 to the lower strike of 100.  

 
(e)  

(i) Calculate the profit or loss at the end of the next day from Delta hedging.  
 
(ii) Explain why the profit or loss is not zero from Delta hedging. 
 
Commentary on Question: 
The Delta for hedging the contingent claim is the same as from part (c). Most 
candidates calculated the payoff of the contingent claim correctly. Some 
candidates did not calculate the final loss due to either not scaling the number of 
shares needed for delta hedging or not using the correct Delta.  
 
Regarding why the loss is not zero from Delta hedging. Most candidates identified 
that the other Greeks were not hedged. Not many candidates identified that the 
large movement in the underlying contributes to the non-zero loss.    

 
To Delta hedge the 100 contingent claims, the firm needs to short 24 shares.  The 
answer of 24 shares is derived from 100 contingent claims x 0.24 (delta of the 
contingent claim).  
 
The profit or loss from Delta hedging is then calculated as: 

Profit = 100[(33.56 − 20.40) − (18.14 − 9.28)] − 24(130 − 110) 
= −50  

 
The loss is not zero from Delta hedging in that: 

• There is a large movement in the price of the underlying. 
• The firm has only Delta hedged and did not hedge the other Greeks. 
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14. Learning Objectives: 
5. The candidate will learn how to apply the techniques of quantitative finance to 

applied business contexts. 
 
Learning Outcomes: 
(5a) Identify and evaluate embedded options in liabilities, specifically indexed annuity 

and variable annuity guarantee riders (GMAB, GMDB, GMWB and GMIB). 
 
(5b) Demonstrate an understanding of embedded guarantee risk including: market, 

insurance, policyholder behavior, and basis risk. 
 
(5c) Demonstrate an understanding of dynamic and static hedging for embedded 

guarantees, including:  
(i)  Risks that can be hedged, including equity, interest rate, volatility and cross 

Greeks. 
(ii)  Risks that can only be partially hedged or cannot be hedged including 

policyholder behavior, mortality and lapse, basis risk, counterparty exposure, 
foreign bonds and equities, correlation and operation failures 

 
Sources: 
QFIQ-134-22: An Intro to Computational Risk Management of Equity-Linked Insurance 
(Ch 1.2-3, 4.7-8, 6.2-3) 
 
QFIQ-135-22: Structured Product Based Variable Annuities (Sections 2 & 3) 
 
QFIQ-128-20: Mitigating Interest Rate Risk in Variable Annuities: An Analysis of 
Hedging Effectiveness under Model Risk 
 
Commentary on Question: 
Commentary listed underneath question component. 
 
Solution: 
Payoff of design 1 = D1 = max(1.035^2*So, S2) 
Payoff of design 2 = D2 = max(So, S1, S2)  
 
P(D2 > D1) = P(max(1.035^2*So, S2) < max(So, S1, S2))  
                    = P(max(1.035^2*So - S2, 0) < max(So- S2, S1- S2, 0)) 
 
Therefore: D2 > D1 if and only if S1> 1.035^2 *So and S1 > S2 
Note: S2 > S1 and S2 > 1.035^2 *S0 leads to D1 = D2 
 
Under the BS framework S1/S0 is independent of S2/S1 and both are lognormally distributed 
P(D2 > D1) = P(S1 >S2 and S1 > 1.035^2 *S0) = P(1 > S2/S1 and S1/S0 > 1.035^2) 
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14. Continued 
 

Due to independence of returns under the BS framework:  
P(1 > S2/S1 and S1/S0 > 1.035^2 )= P(S1 >S2) * P(S1 > 1.035^2 *S0)                                     (*) 
 

P(S1 >S2) = P((Ln(S2/ S1)-r)/𝜎𝜎 < -r/𝜎𝜎) where ((Ln(S1/ S2)-r)/𝜎𝜎 ~ N(0,1) 
under the BS framework  

 
Therefore: P(S1 >S2) = N(-0.03/.15) = .42074 
 
P(S1 > 1.071225*S0) = P((Ln(S1/ S0)-r)/𝜎𝜎 > (ln(1.071225)-r)/𝜎𝜎) = 1 – N(0.259) = .397939 
P(D2 > D1) = .42074 * .397939 = 0.167429 
 
(b)  

(i) Calculate the guaranteed benefit bases (in the table above) for the designs 
under consideration. 
 

(ii) Compare the performance of the different guarantee bases during a 
prolonged equity down-turn. 

 
Commentary on Question: 
Candidates did well on this part. 
 

Reset formula: Gt = max(Gt-1,St) 
Roll-up formula: Gt = (1+k)*Gt-1 
Annual High Step up: Gt = max{Gt-1, Gt-1 (St /St-1)} 
 
  0 1 2 3 4 

St 100 95 80 105 125 
Reset 100 100 100 105 125 

Roll-up 
100 103 106.09 109.27 112.5509 (k = 3% annual) 

Annual High 
Step up 100 100 100 131.25 156.25 

 
During a prolonged equity down-turn the reset and annual high step up 
would remain flat, while the roll-up would continue to increase at 3% per 
year. 
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14. Continued 
 
(c)  

(i) Describe two types of policyholder behavior that could impact this type of 
product. 
 

(ii) Describe how GVA could design their product to mitigate the risk of these 
behaviors in part (c)(i). 

 
Commentary on Question: 
Candidates did well on this part. Candidates who provided other risks to the 
company got credit for this part as well. 

 
(i) Surrenders: Policyholder surrender timing can both cause losses due to 

selective lapsing based on the moneyness of the guarantee or by causing 
disruption of illiquid assets in the hedge portfolio. 
 
Withdrawal timing: withdrawals timing can cause losses based on the 
relative moneyness of the fund value, particularly during the early years. 
 

(ii) Surrenders can be partially managed through the use of surrender charges. 
 
Withdrawal timing can be partially managed by including a deferral period 
in the product that delays when the policyholder can begin their 
guaranteed withdrawals. 
 

(d) Construct a self-financing hedge portfolio, at time t=0, for the GMWB product 
based on the CRO’s suggestion, and the parameters (in table above) determined 
by the company’s hedging area. 

 
Commentary on Question: 
Candidates did not do well on this part. Most candidates did not calculate the 
position in the 1-year zero-coupon bond (ZCB) correctly. 

 
At time t = 0 
Position in stock = ∆𝑡𝑡=  𝜕𝜕𝐿𝐿𝑡𝑡/𝜕𝜕𝑆𝑆𝑡𝑡 = 0.5 
𝜌𝜌𝑡𝑡 = 𝜕𝜕𝜕𝜕𝑡𝑡

𝜕𝜕𝑟𝑟𝑡𝑡
= −.02  

 

𝜌𝜌𝑡𝑡
𝐵𝐵 =  𝜕𝜕𝜕𝜕𝑡𝑡,𝑡𝑡+1

𝜕𝜕𝑟𝑟𝑡𝑡� = 𝜕𝜕𝑒𝑒−𝑟𝑟∗1 = 𝑒𝑒−𝑟𝑟∗1 =  −𝑒𝑒−0.03  
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14. Continued 
 
Position in 1-year ZCB = 𝑎𝑎𝑡𝑡 = 𝜌𝜌𝑡𝑡

𝜌𝜌𝑡𝑡
𝐵𝐵�  =  −.02 −𝑒𝑒−.03 =  .020609⁄   

Position in Bank account = −∆𝑡𝑡𝑆𝑆𝑡𝑡 −  𝑎𝑎𝑡𝑡𝜕𝜕𝑡𝑡,𝑡𝑡+1 since the portfolio is self-funding 

and thus   
 
Position in Bank account = -0.5*100 - .020609 * 𝑒𝑒−.03 = -50.02 

 
(e)  

(i) Calculate the net present value of the distributable earnings and the profit 
margin using a hurdle rate of 8%. 
 

(ii) Critique the profit-testing approach used, in part (e)(i), to evaluate the 
profitability of the VA product. 
 

Commentary on Question: 
Candidates did well on part (i). Full credit was given to candidates who divide 
the NPV by a number (assumed to be the premium) to obtain the profit margin 
(PM). On part (ii), most candidates did not state that investment risks cannot be 
diversified through large pool of policies. 

 
(i) NPV = ∑distributable earnings(t) /(1+hurdle rate)^t 

         =-1200/1.08 + 200/1.08^2+…+700/1.08^7  
         = 719.35 
  PM   = NPV / premium 
 

(ii) This profit testing is using deterministic assumptions (best estimates) 
including mortality rates, lapse rates, interest rates and so on. It normally 
works well for pricing traditional products with mostly mortality risk that 
can be diversified through a large pool of policyholders according to the 
law of large numbers. It allows an insurer to obtain ballpark estimates of 
its profits over long run. 
 
However, investment risk associated with equity-linked insurance 
products is not diversifiable. It is impossible to use a single scenario to 
capture the uncertainty with equity returns.  
 
We need to replace the deterministic scenario by stochastic scenarios to 
calculate the profit measures from all scenarios and form an empirical 
distribution of the insurer’s profit measure. 
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14. Continued 
 
(f)  

(i) Contrast the similarity and difference between actuarial profit-testing and 
no-arbitrage pricing practices. 

 
(ii) Explain the reasons that no-arbitrage pricing is not directly used in the 

insurance industry. 
 

Commentary on Question: 
Candidates did not do well on this part. For part (ii) most candidates listed only 
that no arbitrage pricing does not allow for expenses or profits. 

 
(i) No-arbitrage pricing and actuarial pricing practices are very similar in that 

both aimed to find the fair risk charge such that the net present value of 
profits or the net liability equals zero.  
 
No-arbitrage pricing and actuarial pricing practices are derived from 
entirely different theoretical basis. Actuarial pricing practice is based on 
the quantile of the net liability under the real world measure. The no-
arbitage pricing is based on the expectation of the net liability under the 
risk-neutral measure. 
 

(ii) No-arbitrage pricing is not directly used in the insurance industry as 
• The principle of no-arbitrage pricing does not explicitly allow for 

expenses and profits  
• No-arbitrage pricing is based on the assumption that the underlying 

assets and financial derivatives are freely tradable and short-selling 
is allowed  

• Third-party fund manangers manage the assets and thought to 
develop a replicating portfolio 

• Short-selling of investment guarantees are not possible 
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15. Learning Objectives: 
5. The candidate will learn how to apply the techniques of quantitative finance to 

applied business contexts. 
 
Learning Outcomes: 
(5b) Demonstrate an understanding of embedded guarantee risk including: market, 

insurance, policyholder behavior, and basis risk. 
 
(5c) Demonstrate an understanding of dynamic and static hedging for embedded 

guarantees, including:  
(i)  Risks that can be hedged, including equity, interest rate, volatility and cross 

Greeks. 
(ii)  Risks that can only be partially hedged or cannot be hedged including 

policyholder behavior, mortality and lapse, basis risk, counterparty exposure, 
foreign bonds and equities, correlation and operation failures 

 
(5d) Demonstrate an understanding of target volatility funds and their effect on 

guarantee cost and risk control. 
 
Sources: 
QFIQ-124-20: Variable Annuity Volatility Management: An Era of Risk-Control 
 
QFIQ-135-22: Structured Product Based Variable Annuities, Deng, Dulaney, Husson, 
McCann (sections 2 & 3) 
 
Commentary on Question: 
Part a: Answers that did not receive full credit often missed the underlying zero-coupon 
bond asset in constructing the structured portfolio. 
Part b/d: Successful candidates understood Black-Scholes option pricing formula and 
Vega formula 
Part c: Candidates often listed strategies without objective 
Part e: Most candidates received partial credit on allocations and target vol fund 
purpose from recall  
 
Solution: 
(a) Assume an initial deposit of $100 is made to this spVA product when the 

reference asset value is $100. 
 
(i) Express the buffer level and the cap level, in terms of B% and C%. 

 
(ii) Sketch the maturity payoff of this spVA against the reference asset value 

(label the buffer and cap levels). 
 

(iii) Specify and justify a portfolio of bonds and options that replicates the 
maturity payoff of the spVA.   
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15. Continued 
 

Commentary on Question: 
Full credit was given to part (iii) as long as all four assets are listed without 
formulas  
 

i)  Cap Level = (1+ C%) *Initial Deposit of $100 
The maximum return that issuer pays to investors when there is positive return at 
maturity. 
 
Buffer Level = (1- B%) *Initial Deposit of $100 
The level that investors start to be exposed to losses (i.e., If the value of reference asset 
falls below this level, investors would start to incur losses). 

 

 
 

iii)  
Buffered and capped structured products can be decomposed into a portfolio of four 
assets:  

• a zero-coupon bond with a face amount equal to initial deposit of $100  ------  (1) 
• a short European put option with a strike price at the buffer level  

–P (Buffer) = – Max (Buffer – St,  0)  
= – [Buffer – St | if  St < Buffer]       -------(2) 

• a long European at-the-money call option 
C (100) = Max (St – 100 0) 
= [St - 100 | if  St > 100]       -------(3) 

• a short European call option with a strike price at the cap level. 
–C(Cap) =  – Max (St – Cap, 0) 
= – [St - Cap | if  St >Cap]       -------(4) 
Summing up (1) to (4) 
Payoff =  [St – Buffer +100 | if  St, < Buffer]  
                  + [100 | if  100 > St > Buffer] 
                 + [St | if  Cap > St > 100]    
                + [Cap | if  St > Cap]            match the payoff graph in (ii)
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15. Continued 
 
(b) Calculate and determine whether the fair cap level is 5.5%, 7.5% or 10.5% for this 

spVA product to address the market risk. 
 

Commentary on Question: 
Partial credit was given to candidates who demonstrated command of BS formula 
and was able to calculate value of calls and puts. Candidates often missed the 
correct answer due to missing ZCB value.   
 

Set Initial Deposit = PV of [Initial Deposit * 𝛱𝛱i=1 to t  E(1+Ri)], where 
 
E(1+Ri)  
= 1 – (FVput (S0 , Kbuffer, r, q, 𝜎𝜎, τ)/ S0)  
    + (FVcall (S0 , K= S0, r, q, 𝜎𝜎, τ)/ S0) – (FVcall (S0 , Kcap, r, q, 𝜎𝜎, τ)/ S0) 
 
FVput (S0 =100, K, r=2%, q=0%, 𝜎𝜎=10%, τ=1)  
= KN(–d2) – 100* e 2% * N(–d1)  
 
FVCall (S0 =100, K, r=2%, q=0%, 𝜎𝜎=10%, τ=1)  
= 100* e 2% * N(d1)  – KN(d2) 
 
, where  d1 = [ln(100/K) + 2% + 0.5 * 10%^2]/10% 
                d2 = d1 –10% 
 
FVput (S0 =100, Kbuffer=90, r=2%, q=0%, 𝜎𝜎=10%, τ=1)  = 0.48068 
FVcall (S0 =100, Katm=100, r=2%, q=0%, 𝜎𝜎=10%, τ=1)  = 5.11833 
 
100  
= e −2%(1) 100 * [1 – (FVput (S0 , Kbuffer, r, q, 𝜎𝜎, τ)/ S0)  
    + (FVcall (S0 , K= S0, r, q, 𝜎𝜎, τ)/ S0) – (FVcall (S0 , Kcap, r, q, 𝜎𝜎, τ)/ S0)] 
 
1 = e −2%(1) * [1 – (FVput (S0 , Kbuffer, r, q, 𝜎𝜎, τ)/ S0)  
    + (FVcall (S0 , K= S0, r, q, 𝜎𝜎, τ)/ S0) – (FVcall (S0 , Kcap, r, q, 𝜎𝜎, τ)/ S0)] 
 
   =e−2%* [1–(0.00481)+(0.05118)–(FVcall (S0 , Kcap, r, q, 𝜎𝜎,τ)/ S0)] 
 
FVcall (S0 , Kcap, r, q, 𝜎𝜎,τ)/ S0  = 1–(0.00481)+(0.05118) – e2% 

                                                                                          =0.0262 
 
 Kcap = 105.53  cap rate = 5.53% 
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15. Continued 
 
(c) List four key metrics for evaluating risk management strategy, together with their 

objectives. 
 

Commentary on Question: 
Full credit was only given when strategies are listed with corresponding 
objectives; Full credit was given when 4 out of 5 metrics was provided. 

 
• Guaranteed Cost: PV of fee – PV of guarantee claims 
Objective: Write profitable business. Do the risk-controls 
reduce the hedge cost of the guarantees? 
Measure whether the business is profitable with the hedge program. 
• Vega: change in guaranteed cost  per 1% change in volatility. 
Objective: Stablize ALM and hedging performance. Do the volatility management strategies 
improve Vega? 
Measure whether the performance of hedge program is stable, despite of volatility fluctuation. 
• Hedge Performance: Hedge P&L 
Objective: Stablize ALM and hedging performance. How well do the risk-control strategies 
minimize hedge P&L losses in crises? 
Measure whether the hedge program results in stable P&L over time, despite market 
fluctuations. (ie. equity, interest rate) 
• Basis Risk: effect of tracking error produced by imperfect knowledge of investment 

positions 
Objective: Stablize ALM and hedging performance. Can the risk 
management effectively mirror the changing fund positions? 
• Reserve Impact & Volatility: portfolio values in “tail” of the distribution 
Objective: Optimize capital requirements. Do the funds reduce 
Statutory reserve requirements (and volatility of reserves)? 

 
(d)  

(i) Explain how the spVA sales could be used to mitigate the market risk of 
inforce business, in terms of the embedded option and pricing control 
through the cap. 
 

(ii) Calculate the total Vega for QFI Life’s business, including the $50M of 
new spVA sales. 

 
(iii) Calculate the change in Vega, assuming implied volatility suddenly 

increases to 20%. 
 
(iv) Assess the impact of the spVA business on the change in Vega, based on 

results in part (ii) and part (iii). 
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15. Continued 
 

Commentary on Question: 
Candidates often missed the natural hedge of spVA short position with inforce VA 
long put position. 

 
(i)  
spVA has short position in Put (P(90)), while Inforce VA business has long position in Put 
(P(90)). The spVA sales naturally offset some market risk exposure with Inforce VA 
business under downward market. 
 
The design of spVA include a cap, determining the upside return that would be credited 
to the investor at maturity.   spVAs yield the issuer a tremendous degree of pricing control 
through the cap, which is often priced in premium for the market risks with a lower than 
fair value cap. 

 
(ii) &(iii)  
For Inforce VA Business: 
Embedded option: P(90) 
# of unit: $100M/ $100 = 1M  
 
Vega for P(90) w/ implied volatility @ 10%  
= SN’(d1) sqrt(T-t) = 100*N’(1.3) sqrt(1) = 17.057 
 Long 1M unit * 17.057 = 17.057M 

 
Vega for P(90) w/ implied volatility @ 20%  
= SN’(d1) sqrt(T-t) = 100*N’(0.73) sqrt(1) = 30.63 
 Long 1M unit * 30.63 = 30.63M 

 
For new sales in spVA: 
Embedded option: – P(90) + C(100) – C(105.53) 
# of unit: $50M/ $100 = 0.5M   
 
 
Vega for P(90) w/ implied volatility @ 10% 
= SN’(d1) sqrt(T-t) = 100*N’(1.30) sqrt(1) = 17.057    
 Short 0.5M unit * 17.057= – 8.5283M 

 
Vega for P(90) w/ implied volatility @ 20% 
= SN’(d1) sqrt(T-t) = 100*N’(0.73) sqrt(1) = 30.63   
 Short 0.5M unit * 30.63= – 15.3170M 
 

Vega for C(100) w/ implied volatility @ 10% 
= SN’(d1) sqrt(T-t) = 100*N’(0.25) sqrt(1) = 38.667   
 Long 0.5M unit * 38.667= 19.3334M 
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15. Continued 
 
Vega for C(100) w/ implied volatility @ 20% 
= SN’(d1) sqrt(T-t) = 100*N’(0.2) sqrt(1) = 39.104   
 Long 0.5M unit * 39.104= 19.5521M 
 

Vega for C(105.53) w/ implied volatility @ 10% 
= SN’(d1) sqrt(T-t) = 100*N’(-0.29) sqrt(1) = 38.2708    
 Short 0.5M unit * 38.2708= -19.1354M 

 
Vega for C(105.53) w/ implied volatility @ 20% 
= SN’(d1) sqrt(T-t) = 100*N’(-0.07) sqrt(1) = 39.799 
 Short 0.5M unit * 39.799= – 19.8995M 

Vega for QFI Life’s business w/ volatility @ 10% 
 = 17.057M – 8.5283M +19.3334M – 19.1354M= 8.7263M 
 
Vega for QFI Life’s business w/ volatility @ 20% 
 = 30.63M – 15.317M +19.5521M – 19.8995M = 14.9696M 
 
 Change in Vega = 14.9696M– 8.7263M= 6.2433M 

(iv)  
 
Without the $50M spVA business, the change in the vega of the VA businss is 30.63M 
- 17.057M = 13.5774M.  
 
So, the $50M spVA business reduces the change in vega by 54% (=6.2433M/13.5774M 
- 1).  
 
(v)  
Hedge Inforce VA with new sales in spVA 
• Reduced exposure to the downside market risks. 
• spVA’s short position in P(90) reduces the volatility exposure with Inforce VA, 

which has a long position in P(90). The reduction in volatility exposure is 54% 
because the spVA new sales are 50% of the inforce VA business. 

• spVA’s long position in C(100) and short position in C(105.53) results in a net 
negative Vega exposure at the higher volatility level (20%), slightly offseting the 
positive Vega exposure with Inforce VA. However, it doesn’t provide stable hedge 
to the overall Vega exposure. Depends on the level of implied volatility, spVA’s 
call options could increase the exposure to volatility change (e.g., when the 
volatility is 10%). 
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15. Continued 
 
(e) Under Scenario 1 and Scenario 2, respectively  

 
(i) Determine the allocation to the underlying asset. 

 
(ii) Calculate the total Vega of QFI Life’s VA business (i.e., no spVA).  
 
(iii) Explain how the target volatility fund reduces the market risk of inforce 

business, based on results in part (i) and part (ii). 
 

(i)  
 
Equity Ratio = minimum (110%, 10%/ realized equity volatility) 
 
Scenario 1: 
Equity Ratio = Min(110%, 10%/10%) = 100% 
 
Scenario 2: 
Equity Ratio = Min(110%, 10%/20%) = 50% 
 
(ii)  
Embeded option: P(90) 
 
Scenario 1:  
Implied volatility = 100% * 10% = 10% 
 
Scenario 2:  
Implied volatility = 50% * 20% = 10% 
 
 
Under both Scenario 1 and Scenario 2: 
 
Vega for QFI’s VA business  
= Vega for P(90) 
= SN’(d1) sqrt(T-t) = 100*N’(1.30) sqrt(1) = 17.057M    
 
(iii) Transfer all deposits to target volatility fund under VA 
• Actively manage the volatility exposure  
• In the case of a volatility spike (ie. 10% ->20%), vega can stay unchanged,  as  the 

fund volatility is managed at 10% 
• However, the business is still subject to vega change when volatility drops below 

9%, as the maximum allocation is capped at 110% 
 
 


